Problems

Age
Difficulty
Found: 14

In the number \(1234096\dots\) each digit, starting with the 5th digit is equal to the final digit of the sum of the previous 4 digits. Will the digits 8123 ever occur in that order in a row in this number?

The Babylonian algorithm for deducing \(\sqrt{2}\). The sequence of numbers \(\{x_n\}\) is given by the following conditions: \(x_1 = 1\), \(x_{n + 1} = \frac 12 (x_n + 2/x_n)\) (\(n \geq 1\)).

Prove that \(\lim\limits_{n\to\infty} x_n = \sqrt{2}\).

What will the sequence from the previous problem 61297 be converging towards if we choose \(x_1\) as equal to \(-1\) as the initial condition?

The iterative formula of Heron. Prove that the sequence of numbers \(\{x_n\}\) given by the conditions \(x_1 = 1\), \(x_{n + 1} = \frac 12 (x_n + k/x_n)\), converges. Find the limit of this sequence.

The sequence of numbers \(a_n\) is given by the conditions \(a_1 = 1\), \(a_{n + 1} = a_n + 1/a^2_n\) (\(n \geq 1\)).

Is it true that this sequence is limited?

The algorithm of the approximate calculation of \(\sqrt[3]{a}\). The sequence \(\{a_n\}\) is defined by the following conditions: \(a_0 = a > 0\), \(a_{n + 1} = 1/3 (2a_n + a/a^2_n)\) (\(n \geq 0\)).

Prove that \(\lim\limits_{n\to\infty} a_n = \sqrt[3]{a}\).

The sequence of numbers \(\{a_n\}\) is given by \(a_1 = 1\), \(a_{n + 1} = 3a_n/4 + 1/a_n\) (\(n \geq 1\)). Prove that:

a) the sequence \(\{a_n\}\) converges;

b) \(|a_{1000} - 2| < (3/4)^{1000}\).

The sequence of numbers \(\{x_n\}\) is given by the following conditions: \(x_1 \geq - a\), \(x_{n + 1} = \sqrt{a + x_n}\). Prove that the sequence \(x_n\) is monotonic and bounded. Find its limit.

We call the geometric-harmonic mean of numbers \(a\) and \(b\) the general limit of the sequences \(\{a_n\}\) and \(\{b_n\}\) constructed according to the rule \(a_0 = a\), \(b_0 = b\), \(a_{n + 1} = \frac{2a_nb_n}{a_n + b_n}\), \(b_{n + 1} = \sqrt{a_nb_n}\) (\(n \geq 0\)).

We denote it by \(\nu (a, b)\). Prove that \(\nu (a, b)\) is related to \(\mu (a, b)\) (see problem number 61322) by \(\nu (a, b) \times \mu (1/a, 1/b) = 1\).

Problem number 61322 says that both of these sequences have the same limit.

This limit is called the arithmetic-geometric mean of the numbers \(a, b\) and is denoted by \(\mu (a, b)\).