Now you have two doors with the statements:
It makes no difference which door you pick.
There is treasure behind the first door.
Your guide says: The first sign is true if there is treasure behind the first door, otherwise it is false. The second sign is false if there is treasure behind the second door, otherwise it is true. What do you do?
Now there are three doors with statements on them:
There is nothing behind the third door.
There is a trap behind the first door.
There is nothing behind this door.
Your guide says: There is treasure behind one of the doors, trap behind another one and there is nothing behind the third door. The sign on the door leading to treasure is true, the sign on the door leading to a trap is false, and the third sign might be true or false.
Which door will you open, if you really really want the treasure?
This is a famous problem, called Monty Hall problem after a popular TV show in America.
In the problem, you are on a game show, being asked to choose between three doors. Behind each door, there is either a car or a goat. You choose a door. The host, Monty Hall, picks one of the other doors, which he knows has a goat behind it, and opens it, showing you the goat. (You know, by the rules of the game, that Monty will always reveal a goat.) Monty then asks whether you would like to switch your choice of door to the other remaining door. Assuming you prefer having a car more than having a goat, do you choose to switch or not to switch?
Jason has \(20\) red balls and \(14\) bags to store them. Prove that there is a bag, which contains at least two balls.
One of the most useful tools for proving mathematical statements is the Pigeonhole principle. Here is one example: suppose that a flock of \(10\) pigeons flies into a set of \(9\) pigeonholes to roost. Prove that at least one of these \(9\) pigeonholes must have at least two pigeons in it.
Show the following: Pigeonhole principle strong form: Let \(q_1, \,q_2,\, . . . ,\, q_n\) be positive integers. If \(q_1+ q_2+ . . . + q_n - n + 1\) objects are put into \(n\) boxes, then either the \(1\)st box contains at least \(q_1\) objects, or the \(2\)nd box contains at least \(q_2\) objects, . . ., or the \(n\)th box contains at least \(q_n\) objects.
How can you deduce the usual Pigeonhole principle from this statement?
Each integer on the number line is coloured either white or black. The numbers \(2016\) and \(2017\) are coloured differently. Prove that there are three identically coloured integers which sum to zero.
Each integer on the number line is coloured either yellow or blue. Prove that there is a colour with the following property: For every natural number \(k\), there are infinitely many numbers of this colour divisible by \(k\).
There are \(100\) non-zero numbers written in a circle. Between every two adjacent numbers, their product was written, and the previous numbers were erased. It turned out that the number of positive numbers after the operation coincides with the amount of positive numbers before. What is the minimum number of positive numbers that could have been written initially?
Let \(r\) be a rational number and \(x\) be an irrational number (i.e. not a rational one). Prove that the number \(r+x\) is irrational.
If \(r\) and \(s\) are both irrational, then must \(r+s\) be irrational as well?