The medians \(AD\) and \(BE\) of the triangle \(ABC\) intersect at the point \(F\). Prove that the triangles \(AFB\) and \(DFE\) are similar. What is their similarity coefficient?
In a triangle \(\triangle ABC\), the angle \(\angle B = 90^{\circ}\) . The altitude from point \(B\) intersects \(AC\) at \(D\). We know the lengths \(AD = 9\) and \(CD = 25\). What is the length \(BD\)?
Let \(ABC\) and \(DEF\) be two triangles such that \(\angle ACB = \angle DFE\) and \(\frac{DF}{AC} = \frac{EF}{BC}\). Prove that triangles \(ABC\) and \(DEF\) are similar.
Let \(AA_1\) and \(BB_1\) be the medians of the triangle \(ABC\). Prove that triangles \(A_1B_1C\) and \(BAC\) are similar. What is the similarity coefficient?
Let \(AD\) and \(BE\) be the heights of the triangle \(ABC\), which intersect at the point \(F\). Prove that the triangles \(AFE\) and \(BFD\) are similar.
Let \(AD\) and \(BE\) be the heights of the triangle \(ABC\). Prove that triangles \(DEC\) and \(ABC\) are similar.
Let \(CB\) and \(CD\) be tangents to the circle with the centre \(A\), let \(E\) be the point of intersection of the line \(AC\) with the circle. Draw \(FG\) as the segment of a tangent drawn through the point \(E\) between the lines \(CB\) and \(CD\). Find \(FG\) if the radius of the circle is \(15\) and \(AC = 39\).
In the triangle \(ABC\) with a right angle \(\angle ACB\), \(CD\) is the height and \(CE\) is the bisector. Draw the bisectors \(DF\) and \(DG\) of the triangles \(BDC\) and \(ADC\). Prove that \(CFEG\) is a square.
Let \(u\) and \(v\) be two positive integers, with \(u>v\). Prove that a triangle with side lengths \(u^2-v^2\), \(2uv\) and \(u^2+v^2\) is right-angled.
We call a triple of natural numbers (also known as positive integers) \((a,b,c)\) satisfying \(a^2+b^2=c^2\) a Pythagorean triple. If, further, \(a\), \(b\) and \(c\) are relatively prime, then we say that \((a,b,c)\) is a primitive Pythagorean triple.
Show that every primitive Pythagorean triple can be written in the form \((u^2-v^2,2uv,u^2+v^2)\) for some coprime positive integers \(u>v\).