In the set \(-5\), \(-4\), \(-3\), \(-2\), \(-1\), \(0\), \(1\), \(2\), \(3\), \(4\), \(5\), replace one number with two other integers so that the set variance and its mean remain unchanged.
Valerie wrote the number 1 on the board, and then several more numbers. As soon as Valerie writes the next number, Mike calculates the median of the already available set of numbers and writes it in his notebook. At some point, in Mike’s notebook, the numbers: 1; 2; 3; 2.5; 3; 2.5; 2; 2; 2; 2.5 are written.
a) What is the fourth number written on the board?
b) What is the eighth number written on the board?
In a room, there are three-legged stools and four-legged chairs. When people sat down on all of these seats, there were 39 legs (human and stool/chair legs) in the room. How many stools are there in the room?