In the set \(-5\), \(-4\), \(-3\), \(-2\), \(-1\), \(0\), \(1\), \(2\), \(3\), \(4\), \(5\), replace one number with two other integers so that the set variance and its mean remain unchanged.
Valerie wrote the number 1 on the board, and then several more numbers. As soon as Valerie writes the next number, Mike calculates the median of the already available set of numbers and writes it in his notebook. At some point, in Mike’s notebook, the numbers: 1; 2; 3; 2.5; 3; 2.5; 2; 2; 2; 2.5 are written.
a) What is the fourth number written on the board?
b) What is the eighth number written on the board?
In a room, there are three-legged stools and four-legged chairs. When people sat down on all of these seats, there were 39 legs (human and stool/chair legs) in the room. How many stools are there in the room?
For which \(n\) is the expression \(n^4+4^n\) prime?
Find all solutions to \(x^2+2=y^3\) in the natural numbers.
McDonald’s used to sell Chicken McNuggets in boxes of 6, 9 or 20 in the UK before they introduced the Happy Meal. What is the largest number of Chicken McNuggets that could not be bought? For example, you wouldn’t have been able to buy 8 Chicken McNuggets, but you could have bought \(21 = 6+6+9\) Chicken McNuggets.
Show that the equation \(x^4+y^4=z^4\) cannot satisfied by integers \(x,y,z\) if none of them are 0.
A regular polygon has integer side lengths and its perimeter is 60. How many sides can it have?
Find positive integers \(x,y,z\) such that \(28x+30y+31z = 365\).
Given a piece of paper, we are allowed to cut it into 8 or 12 pieces. Can we get exactly 60 pieces of paper starting with a single piece?