If you are on a boat and toss a suitcase overboard, will the water level rise or fall?
You have 26 constants, labeled \(A\) through \(Z\). Let \(A\) equal 1. The other constants have values equal to the letter’s position in the alphabet, raised to the power of the previous constant. That means that \(B\) (the second letter) = \(2^A=2^1= 2\), \(C = 3^B=3^2= 9\), and so on. Find the exact numerical value for this expression: \[(X-A)(X-B)(X-C)\dots (X-Y)(X-Z).\]
Ten little circles are drawn on a squared board \(4\times4\).
Cut the board into identical parts in such a way that each part contains 1, 2, 3, and 4 drawn circles correspondingly.
Philip and Denis cut a watermelon into four parts. When they finished eating watermelon (they ate the whole thing), they discovered that there were five watermelon rinds left. How is it possible, if no rind was cut after the initial cutting?
Cut a square into a heptagon (7 sides) and an octagon (8 sides) in such a way, that for every side of an octagon there exists an equal side belonging to the heptagon.
This academic year Harry decided not only to attend Maths Circles, but also to join his local Chess Club. Harry’s chess set was very old and some pieces were missing so he ordered a new one. When it arrived, he found out to his surprise that the set consisted of 32 knights of different colours. He was a bit upset but he decided to spend some time on solving the problem he heard on the last Saturday’s Maths Circle session. The task was to find out if it is possible to put more than 30 knights on a chessboard in such a way that they do not attack each other. Do you think it is possible or not?
After listening to Harry’s complaints the delivery service promised him to deliver a very expensive chess set together with some books on chess strategies and puzzles. This week one of the tasks was to put 14 bishops on a chessboard so that they do not attack each other. Harry solved this problem and smiled hoping he is not getting 32 identical bishops this time. Can you solve it?
Sometimes life can make us do the craziest of things. In this problem you just need to find out how one can cut an \(8\times8\) chessboard into 20 pieces each having the same perimeter and consisting of a whole number of cells.
On the way back from his weekly maths circle Harry created the following puzzle:
Put 48 rooks on a \(10\times10\) board so that each rook attacks only 2 or 4 empty cells.
When he showed this problem to the teachers next Saturday they were very impressed and decided to include it in the next problem set. Try to find a suitable placement of rooks.
Cut a rectangle into two identical pentagons.