Katie and Juan played chess for some time and they got bored - Katie was winning all the time. She decided to make the game easier for Juan and changed the rules a bit. Now, each player makes two usual chess moves at once, and then the other player does the same. (Rules for checks and check-mates are modified accordingly). In the new game, Juan will start first. Show that Katie definitely does not have a winning strategy.
Two players are emptying two drawers full of socks. One drawer has 20 socks and the other has 34 socks. Each player can take any number of socks from one drawer. The player who can’t make a move loses. Assuming the players make no mistakes, will the first or the second player win?
Tommy and Claire are going to get some number of game tokens tomorrow. They are planning to play a game: each player can take \(1,4\) or \(5\) tokens from the total. The person who can’t take any more loses. Claire will start. They don’t know how many tokens they will get. They might get a number between \(1\) and \(2025\). In how many cases Claire will have a winning strategy?
Fred and Johnny have the number \(1000\) written on a board. Players take turn to wipe out the number currently on the board and replace it with either a number \(1\) smaller, or half of the number on the board (rounded down). The player that writes \(0\) on the board wins. Johnny starts, who has the winning strategy?
You take nine cards out of a standard deck (ace through 9 of hearts),
put them all face up on a table and play the following game against
another player: Both players take turns choosing a card. The first
player to have three cards that add up to 15 wins. The ace counts as
one.
If both players play optimally, which player has a winning strategy?
Andy and Melissa are playing a game using a rectangular chocolate bar made of identical square pieces arranged in \(50\) rows and \(20\) columns. A move is to divide the bar into two parts along a division line. Two parts of the bar stay in the game as separate pieces and cannot be rotated, but both can continue to be divided. However, Melissa can only cut along the vertical lines and Andy can only cut along the horizontal lines. Melissa starts. Who will win?
Terry and Janet are playing a game with stones. There are two piles of stones, one has \(m\) stones and the other has \(n\) stones initially. In their turn, a player takes from one pile a positive number of stones that is a multiple of the number of stones in the other pile at that moment. The player who cleans up one of the piles wins. Terry starts - who will win?
Adi and Maxim play a game. There are \(100\) sweets in a bowl, and they each take in turns to take either \(2\), \(3\) or \(4\) sweets. Whoever cannot take any more sweets (since the bowl is empty, or there’s only \(1\) left) loses.
Maxim goes first - who has the winning strategy?
Michelle and Mondo play the following game, with Michelle going first. They start with a regular polygon, and take it in turns to move. A move is to pick two non-adjacent points in one polygon, connect them, and split that polygon into two new polygons. A player wins if their opponent cannot move - which happens if there are only triangles left. See the diagram below for an example game with a pentagon. Prove that Michelle has the winning strategy if they start with a decagon (\(10\)-sided polygon).