Petya and Misha play such a game. Petya takes in each hand a coin: one – 10 pence, and the other – 15. After that, the contents of the left hand are multiplied by 4, 10, 12 or 26, and the contents of the right hand – by 7, 13, 21 or 35. Then Petya adds the two results and tells Misha the result. Can Misha, knowing this result, determine which hand – the right or left – contains the 10 pence coin?
Ben and Joe play chess. In addition to a chessboard, they have one rook, which they put in the lower right corner, and they move it in turns. It can only be moved upwards or to the left (for any number of cells). The player who can not make a move, loses. Joe goes first. Who will win with the correct method?
There is a \(5\times 9\) rectangle drawn on squared paper. In the lower left corner of the rectangle is a button. Kevin and Sophie take turns moving the button any number of squares either to the right or up. Kevin goes first. The winner is the one who places the button in upper right corner. Who would win, Kevin or Sophie, by using the right strategy?
There are three groups of stones: in the first – 10, in the second – 15, in the third – 20. During one turn, you are allowed to split any pile into two smaller ones; the one who cannot make a move loses.
Two players take turns to put rooks on a chessboard so that the rooks cannot capture each other. The player who cannot make a move loses.
On a board there are written 10 units and 10 deuces. During a game, one is allowed to erase any two numbers and, if they are the same, write a deuce, and if they are different then they can write a one. If the last digit left on the board is a unit, then the first player won, if it is a deuce then the second player wins.
The numbers 25 and 36 are written on a blackboard. Consider the game with two players where: in one turn, a player is allowed to write another natural number on the board. This number must be the difference between any two of the numbers already written, such that this number does not already appear on the blackboard. The loser is the player who cannot make a move.
Consider a chessboard of size (number of rows \(\times\) number of columns): a) \(9\times 10\); b) \(10\times 12\); c) \(9\times 11\). Two people are playing a game where: in one turn a player is allowed to cross out any row or column as long as there it contains at least one square that is not crossed out. The loser is the player who cannot make a move. Which player will win?
Two players in turn put coins on a round table, in such a way that they do not overlap. The player who can not make a move loses.
Two people take turns placing bishops on a chessboard such that the bishops cannot attack each other. Here, the colour of the bishops does not matter. (Note: bishops move and attack diagonally.) Which player wins the game, if the right strategy is used?