Problems

Age
Difficulty
Found: 92

There is a rectangular table. Two players start in turn to place on it one pound coin each, so that these coins do not overlap one another. The player who cannot make a move loses. Who will win with the correct strategy?

a) Two players play in the following game: on the table there are 7 two pound coins and 7 one pound coins. In a turn it is allowed to take coins worth no more than three pounds. The one who takes the last coin wins. Who will win with the correct strategy?

b) The same question, if there are 12 one pound and 12 two pound coins.

On Easter Island, people ask each other questions, to which only “yes” or “no” can be answered. In this case, each of them belongs exactly to one of the tribes either A or B. People from tribe A ask only those questions to which the correct answer is “yes”, and from tribe B – those questions to which the correct answer is “no.” In one house lived a couple Ethan and Violet Russell. When Inspector Krugg approached the house, the owner met him on the doorstep with the words: “Tell me, do Violet and I belong to tribe B?”. The inspector thought and gave the right answer. What was the right answer?

Gabby is standing on a river bank. She has two clay jars: one – for 5 litres, and about the second Gabby remembers only that it holds either 3 or 4 litres. Help Gabby determine the capacity of the second jar. (Looking into the jar, you cannot figure out how much water is in it.)

The bank of the Nile was approached by a group of six people: three Bedouins, each with his wife. At the shore is a boat with oars, which can withstand only two people at a time. A Bedouin can not allow his wife to be without him whilst in the company of another man. Can the whole group cross to the other side?

Cut the interval \([-1, 1]\) into black and white segments so that the integrals of any a) linear function; b) a square trinomial in white and black segments are equal.

Solve problem number 108736 for the inscription \(A\), \(BC\), \(DEF\), \(CGH\), \(CBE\), \(EKG\).

\(x_1\) is the real root of the equation \(x^2 + ax + b = 0\), \(x_2\) is the real root of the equation \(x^2 - ax - b = 0\).

Prove that the equation \(x^2 + 2ax + 2b = 0\) has a real root, enclosed between \(x_1\) and \(x_2\). (\(a\) and \(b\) are real numbers).

With a non-zero number, the following operations are allowed: \(x \rightarrow \frac{1+x}{x}\), \(x \rightarrow \frac{1-x}{x}\). Is it true that from every non-zero rational number one can obtain each rational number with the help of a finite number of such operations?

Members of the State parliament formed factions in such a way that for any two factions \(A\) and \(B\) (not necessarily different)

image

– also a faction (through

image

the set of all parliament members not included in \(C\) is denoted). Prove that for any two factions \(A\) and \(B\), \(A \cup % \includegraphics{https://problems-static.s3.amazonaws.com/production/task_images/700/109909-3.png} B\) is also a faction.