The numbers \(x\), \(y\) and \(z\) are such that all three numbers \(x + yz\), \(y + zx\) and \(z + xy\) are rational, and \(x^2 + y^2 = 1\). Prove that the number \(xyz^2\) is also rational.
In the Republic of mathematicians, the number \(\alpha > 2\) was chosen and coins were issued with denominations of 1 pound, as well as in \(\alpha^k\) pounds for every natural \(k\). In this case \(\alpha\) was chosen so that the value of all the coins, except for the smallest, was irrational. Could it be that any amount of a natural number of pounds can be made with these coins, using coins of each denomination no more than 6 times?
A function \(f\) is given, defined on the set of real numbers and taking real values. It is known that for any \(x\) and \(y\) such that \(x > y\), the inequality \((f (x)) ^2 \leq f (y)\) is true. Prove that the set of values generated by the function is contained in the interval \([0,1]\).
The numerical function \(f\) is such that for any \(x\) and \(y\) the equality \(f (x + y) = f (x) + f (y) + 80xy\) holds. Find \(f(1)\) if \(f(0.25) = 2\).
Solve the system of equations: \[\begin{aligned} \sin y - \sin x &= x-y; &&\text{and}\\ \sin y - \sin z &= z-y; && \text{and}\\ x-y+z &= \pi. \end{aligned}\]
In a row there are 20 different natural numbers. The product of every two of them standing next to one another is the square of a natural number. The first number is 42. Prove that at least one of the numbers is greater than 16,000.
Author: I.I. Bogdanov
Peter wants to write down all of the possible sequences of 100 natural numbers, in each of which there is at least one 3, and any two neighbouring terms differ by no more than 1. How many sequences will he have to write out?
Author: I.I. Bogdanov
Peter wants to write down all of the possible sequences of 100 natural numbers, in each of which there is at least one 4 or 5, and any two neighbouring terms differ by no more than 2. How many sequences will he have to write out?
On the occasion of the beginning of the winter holidays all of the boys from class 8B went to the shooting range. It is known that there are \(n\) boys in 8B. There are \(n\) targets at the shooting range which the class attended. Each of the boys randomly chooses a target, while some of the boys could choose the same target. After this, all of the boys simultaneously attempt to shoot their target. It is known that each of the boys hits their target. The target is considered to be affected if at least one boy has hit it.
a) Find the average number of affected targets.
b) Can the average number of affected targets be less than \(n/2\)?
A fly moves from the origin only to the right or upwards along the lines of the integer grid (a monotonic wander). In each node of the net, the fly randomly selects the direction of further movement: upwards or to the right.
a) Prove that sooner or later the fly will reach the point with abscissa 2011.
b) Find the mathematical expectation of the ordinate of the fly at the moment when the fly reached the abscissa 2011.