Problems

Age
Difficulty
Found: 219

Prove that the infinite decimal \(0.1234567891011121314 \dots\) (after the decimal point, all of the natural numbers are written out in order) is an irrational number.

Three people play table tennis, and the player who lost the game gives way to the player who did not participate in it. As a result, it turned out that the first player played 10 games and the second played 21 games. How many games did the third player play?

Construct a function defined at all points on a real line which is continuous at exactly one point.

10 numbers are written around the circle, the sum of which is equal to 100. It is known that the sum of every three numbers standing side by side is not less than 29.

Specify the smallest number \(A\) such that in any such set of numbers each of the numbers does not exceed \(A\).

Prove that the equation \[a_1 \sin x + b_1 \cos x + a_2 \sin 2x + b_2 \cos 2x + \dots + a_n \sin nx + b_n \cos nx = 0\] has at least one root for any values of \(a_1 , b_1, a_2, b_2, \dots, a_n, b_n\).

Let \(f (x)\) be a polynomial about which it is known that the equation \(f (x) = x\) has no roots. Prove that then the equation \(f (f (x)) = x\) does not have any roots.