Problems

Age
Difficulty
Found: 584

Fred chose 2017 (not necessarily different) natural numbers \(a_1, a_2, \dots , a_{2017}\) and plays by himself in the following game. Initially, he has an unlimited supply of stones and 2017 large empty boxes. In one move Fred adds a1 stones to any box (at his choice), in any of the remaining boxes (of his choice) – \(a_2\) stones, ..., finally, in the remaining box – \(a_{2017}\) stones. His purpose is to ensure that eventually all the boxes have an equal number of stones. Could he have chosen the numbers so that the goal could be achieved in 43 moves, but is impossible for a smaller non-zero number of moves?

Gary drew an empty table of \(50 \times 50\) and wrote on top of each column and to the left of each row a number. It turned out that all 100 written numbers are different, and 50 of them are rational, and the remaining 50 are irrational. Then, in each cell of the table, he wrote down a product of numbers written at the top of its column and to the left of the row (the “multiplication table”). What is the largest number of products in this table which could be rational numbers?

On the school board a chairman is chosen. There are four candidates: \(A\), \(B\), \(C\) and \(D\). A special procedure is proposed – each member of the council writes down on a special sheet of candidates the order of his preferences. For example, the sequence \(ACDB\) means that the councilor puts \(A\) in the first place, does not object very much to \(C\), and believes that he is better than \(D\), but least of all would like to see \(B\). Being placed in first place gives the candidate 3 points, the second – 2 points, the third – 1 point, and the fourth - 0 points. After collecting all the sheets, the election commission summarizes the points for each candidate. The winner is the one who has the most points.

After the vote, \(C\) (who scored fewer points than everyone) withdrew his candidacy in connection with his transition to another school. They did not vote again, but simply crossed out \(B\) from all the leaflets. In each sheet there are three candidates left. Therefore, first place was worth 2 points, the second – 1 point, and the third – 0 points. The points were summed up anew.

Could it be that the candidate who previously had the most points, after the self-withdrawal of \(B\) received the fewest points?

In a tournament, 100 wrestlers are taking part, all of whom have different strengths. In any fight between two wrestlers, the one who is stronger always wins. In the first round the wrestlers broke into random pairs and fought each other. For the second round, the wrestlers once again broke into random pairs of rivals (it could be that some pairs will repeat). The prize is given to those who win both matches. Find:

a) the smallest possible number of tournament winners;

b) the mathematical expectation of the number of tournament winners.

In each cell of a board of size \(5\times5\) a cross or a nought is placed, and no three crosses are positioned in a row, either horizontally, vertically or diagonally. What is the largest number of crosses on the board?

An after school club is attended by 4 boys from class 7A, and four from class 7B. Of those who attended three were named Ben, three were named Will, and two were named Tom.

Is it possible for it to be the case that each boy had at least one namesake classmate who attended the club?

Three cyclists travel in one direction along a circular track that is 300 meters long. Each of them moves with a constant speed, with all of their speeds being different. A photographer will be able to make a successful photograph of the cyclists, if all of them are on some part of the track which has a length of \(d\) meters. What is the smallest value of \(d\) for which the photographer will be able to make a successful photograph sooner or later?

We took several positive numbers and constructed the following sequence: \(a_1\) is the sum of the initial numbers, \(a_2\) is the sum of the squares of the original numbers, \(a_3\) is the sum of the cubes of the original numbers, and so on.

a) Could it happen that up to \(a_5\) the sequence decreases (\(a_1> a_2> a_3> a_4> a_5\)), and starting with \(a_5\) – it increases (\(a_5 < a_6 < a_7 <\dots\))?

b) Could it be the other way around: before \(a_5\) the sequence increases, and starting with \(a_5\) – decreases?

A grasshopper can make jumps of 8, 9 and 10 cells in any direction on a strip of \(n\) cells. We will call the natural number \(n\) jumpable if the grasshopper can, starting from some cell, bypass the entire strip, having visited each cell exactly once. Find at least one \(n > 50\) that is not jumpable.