Problems

Age
Difficulty
Found: 28

The Hatter made 44 hats. Can he put his hats into 9 piles in such a way that the number of hats in each pile is different?

Alice finally decided to do some arithmetic. She took four different integer numbers, calculated their pairwise sums and products, and the results ( the pairwise sums and products) wrote down in her wonderful book. What could be the smallest number of different numbers Alice wrote in her book?

Alice wants to write down the numbers from 1 to 16 in such a way that the sum of two neighbouring numbers will be a square number. The Hatter tells Alice that he can write down the numbers with this property in a line, but he believes that it is absolutely impossible to write the numbers with this property in a circle. Show that he is right.

Show that \(\frac{x}{y} + {\frac{y}{z}} + {\frac{z}{x}} = 1\) is not solvable in natural numbers.

Notice that the square number 1089 \((=33^2)\) has two even and two odd digits in its decimal representation.

(a) Can you find a 6-digit square number with the same property (the number of odd digits equals the number of even digits)?

(b) What about such 100-digit square number?

You are given 10 different positive numbers. In which order should they be named \(a_1, a_2, \dots , a_{10}\) such that the sum \(a_1 +2a_2 +3a_3 +\dots +10a_{10}\) is at its maximum?

The numerical function \(f\) is such that for any \(x\) and \(y\) the equality \(f (x + y) = f (x) + f (y) + 80xy\) holds. Find \(f(1)\) if \(f(0.25) = 2\).

The functions \(f\) and \(g\) are defined on the entire number line and are reciprocal. It is known that \(f\) is represented as a sum of a linear and a periodic function: \(f (x) = kx + h (x)\), where \(k\) is a number, and \(h\) is a periodic function. Prove that \(g\) is also represented in this form.