Prove that for any natural number there is a multiple of it, the decimal notation of which consists of only 0 and 1.
Without calculating the answer to \(2^{30}\), prove that it contains at least two identical digits.
Prove that there are infinitely many composite numbers among the numbers \(\lfloor 2^k \sqrt{2}\rfloor\) (\(k = 0, 1, \dots\)).
Prove that if \((m, 10) = 1\), then there is a repeated unit \(E_n\) that is divisible by \(m\). Will there be infinitely many repeated units?
Is it possible to draw from some point on a plane \(n\) tangents to a polynomial of \(n\)-th power?
It is known that \(\cos \alpha^{\circ} = 1/3\). Is \(\alpha\) a rational number?
Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).
For what values of \(n\) does the polynomial \((x+1)^n - x^n - 1\) divide by:
a) \(x^2 + x + 1\); b) \((x^2 + x + 1)^2\); c) \((x^2 + x + 1)^3\)?
a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.
b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).
Old calculator I.
a) Suppose that we want to find \(\sqrt[3]{x}\) (\(x> 0\)) on a calculator that can find \(\sqrt{x}\) in addition to four ordinary arithmetic operations. Consider the following algorithm. A sequence of numbers \(\{y_n\}\) is constructed, in which \(y_0\) is an arbitrary positive number, for example, \(y_0 = \sqrt{\sqrt{x}}\), and the remaining elements are defined by \(y_{n + 1} = \sqrt{\sqrt{x y_n}}\) (\(n \geq 0\)).
Prove that \(\lim\limits_{n\to\infty} y_n = \sqrt[3]{x}\).
b) Construct a similar algorithm to calculate the fifth root.