Problems

Age
Difficulty
Found: 353

Prove that for a real positive \(\alpha\) and a positive integer \(d\), \(\lfloor \alpha / d\rfloor = \lfloor \lfloor \alpha\rfloor / d\rfloor\) is always satisfied.

Let \(m\) and \(n\) be integers. Prove that \(mn(m + n)\) is an even number.

Prove that in a three-digit number, that is divisible by 37, you can always rearrange the numbers so that the new number will also be divisible by 37.

Prove that if \(p\) is a prime number and \(1 \leq k \leq p - 1\), then \(\binom{p}{k}\) is divisible by \(p\).

Prove that if \(p\) is a prime number, then \((a + b)^p - a^p - b^p\) is divisible by \(p\) for any integers \(a\) and \(b\).