Problems

Age
Difficulty
Found: 822

It is known that \(AA + A = XYZ\). What is the last digit of the product: \(B \times C \times D \times D \times C \times E \times F \times G\) (where different letters denote different digits, identical letters denote identical digits)?

Monica is in a broken space buggy at a distance of 18 km from the Lunar base, in which Rachel sits. There is a stable radio communication system between them. The air reserve in the space buggy is enough for 3 hours, in addition, Monica has an air cylinder for the spacesuit, with an air reserve of 1 hour. Rachel has a lot of cylinders with an air supply of 2 hours each. Rachel can not carry more than two cylinders at the same time (one of them she uses herself). The speed of movement on the Moon in the suit is 6 km/h. Could Rachel save Monica and not die herself?

There are 40 identical cords. If you set any cord on fire on one side, it burns, and if you set it alight on the other side, it will not burn. Ahmed arranges the cords in the form of a square (see the figure below, each cord makes up a side of a cell). Then, Helen arranges 12 fuses. Will Ahmed be able to lay out the cords in such a way that Helen will not be able to burn all of them?

301 schoolchildren came to the school’s New Year’s party in the city of Moscow. Some of them always tell the truth, and the rest always lie. Each of some 200 students said: “If I leave the hall, then among the remaining students, the majority will be liars.” Each of the other schoolchildren said: “If I leave the room, then among the remaining students, there will be twice as many liars as those who speak the truth.” How many liars were at the party?

Two play the following game. There is a pile of stones. The first takes either 1 stone or 10 stones with each turn. The second takes either m or n stones with every turn. They take turns, beginning with the first player. He who can not make a move, loses. It is known that for any initial quantity of stones, the first one can always play in such a way as to win (for any strategy of the second player). What values can m and n take?

On the left bank of the river, there were 5 physicists and 5 chemists. All of them need to cross to the right bank. There is a two-seater boat. On the right bank at any time there can not be exactly three chemists or exactly three physicists. How do they all cross over by making 9 trips to the right side?

A group of children from two classes came to an after school club: Jack, Ben, Fred, Louis, Claudia, Janine and Charlie. To the question: “How many of your classmates are here?” everyone honestly answered with either “Two” or “Three”. But the boys thought that they were only being asked about the boy classmates, and the girls correctly understood that they were asking about everyone. Is Charlie a boy or a girl?

Hannah recorded the equality \(MA \times TE \times MA \times TI \times CA = 2016000\) and suggested that Charlie replace the same letters with the same numbers, and different letters with different digits, so that the equality becomes true. Does Charlie have the possibility of fulfilling the task?

Catherine laid out 2016 matches on a table and invited Anna and Natasha to play a game which involves taking turns to remove matches from a table: Anna can take 5 matches or 26 matches in her turn, and Natasha can take either 9 or 23. Without waiting for the start of the game, Catherine left, and when she returned, the game was already over. On the table there are two matches, and the one who can not make another turn loses. After a good reflection, Catherine realised which person went first and who won. Figure it out for yourself now.

At a round table, there are 10 people, each of whom is either a knight who always speaks the truth, or a liar who always lies. Two of them said: “Both my neighbors are liars,” and the remaining eight stated: “Both my neighbors are knights.” How many knights could there be among these 10 people?