Problems

Age
Difficulty
Found: 353

\(2n\) diplomats sit around a round table. After a break the same \(2n\) diplomats sit around the same table, but this time in a different order.

Prove that there will always be two diplomats with the same number of people sitting between them, both before and after the break.

10 natural numbers are written on a blackboard. Prove that it is always possible to choose some of these numbers and write “\(+\)” or “\(-\)” between them so that the resulting algebraic sum is divisible by 1001.

Given a board (divided into squares) of the size: a) \(10\times 12\), b) \(9\times 10\), c) \(9\times 11\), consider the game with two players where: in one turn a player is allowed to cross out any row or any column if there is at least one square not crossed out. The loser is the one who cannot make a move. Is there a winning strategy for one of the players?

Upon the installation of a keypad lock, each of the 26 letters located on the lock’s keypad is assigned an arbitrary natural number known only to the owner of the lock. Different letters do not necessarily have different numbers assigned to them. After a combination of different letters, where each letter is typed once at most, is entered into the lock a summation is carried out of the corresponding numbers to the letters typed in. The lock opens only if the result of the summation is divisible by 26. Prove that for any set of numbers assigned to the 26 letters, there exists a combination that will open the lock.

To transmit messages by telegraph, each letter of the Russian alphabet () ( and are counted as identical) is represented as a five-digit combination of zeros and ones corresponding to the binary number of the given letter in the alphabet (letter numbering starts from zero). For example, the letter is represented in the form 00000, letter -00001, letter -10111, letter -11111. Transmission of the five-digit combination is made via a cable containing five wires. Each bit is transmitted on a separate wire. When you receive a message, Cryptos has confused the wires, so instead of the transmitted word, a set of letters is received. Find the word you sent.

Around a table sit boys and girls. Prove that the number of pairs of neighbours of different sexes is even.

Could the difference of two integers multiplied by their product be equal to the number 1999?

a) There are 21 coins on a table with the tails side facing upwards. In one operation, you are allowed to turn over any 20 coins. Is it possible to achieve the arrangement were all coins are facing with the heads side upwards in a few operations?

b) The same question, if there are 20 coins, but you are allowed to turn over 19.