a) There are 21 coins on a table with the tails side facing upwards. In one operation, you are allowed to turn over any 20 coins. Is it possible to achieve the arrangement were all coins are facing with the heads side upwards in a few operations?
b) The same question, if there are 20 coins, but you are allowed to turn over 19.
Prove that the following inequalities hold for the Brockard angle \(\varphi\):
a) \(\varphi ^{3} \le (\alpha - \varphi) (\beta - \varphi) (\gamma - \varphi)\) ;
b) \(8 \varphi^{3} \le \alpha \beta \gamma\) (the Jiff inequality).
a) A square of area 6 contains three polygons, each of area 3. Prove that among them there are two polygons that have an overlap of area no less than 1.
b) A square of area 5 contains nine polygons of area 1. Prove that among them there are two polygons that have an overlap of area no less than \(\frac{1}{9}\).
A rectangular table is given, in each cell of which a real number is written, and in each row of the table the numbers are arranged in ascending order. Prove that if you arrange the numbers in each column of the table in ascending order, then in the rows of the resulting table, the numbers will still be in ascending order.
Each side in the triangle \(ABC\) is divided into 8 equal segments. How many different triangles exist with the vertices at the points of division (the points \(A\), \(B\), \(C\) cannot be the vertices of triangles) in which neither side is parallel to either side of the triangle \(ABC\)?
How many integers are there from 1 to 1,000,000, which are neither full squares, nor full cubes, nor numbers to the fourth power?
Prove that there are infinitely many composite numbers among the numbers \(\lfloor 2^k \sqrt{2}\rfloor\) (\(k = 0, 1, \dots\)).
a) One person had a basement illuminated by three electric bulbs. Switches of these bulbs are located outside the basement, so that having switched on any of the switches, the owner has to go down to the basement to see which lamp switches on. One day he came up with a way to determine for each switch which bulb it switched on, descending into the basement exactly once. What is the method?
b) If he goes down to the basement exactly twice, how many bulbs can he identify the switches for?
Will thought of a number: 1, 2 or 3. You can ask him only one question, to which he can answer “yes”, “no” or “I do not know”. Can you guess the number by asking just one question?
Peter thought of a number between 1 to 200. What is the fewest number of questions for which you can guess the number if Peter answers
a) “yes ” or “no”;
b) “yes”, “no” or “I do not know”
for every question?