The faces of a polyhedron are coloured in two colours so that the neighbouring faces are of different colours. It is known that all of the faces except for one have a number of edges that is a multiple of 3. Prove that this one face has a multiple of 3 edges.
Solve the equation in integers \(2x + 5y = xy - 1\).
Prove there are no integer solutions for the equation \(4^k - 4^l = 10^n\).
Recall that a natural number \(x\) is called prime if \(x\) has no divisors except \(1\) and itself. Solve the equation with prime numbers \(pqr = 7(p + q + r)\).
On a plane, there are 1983 points and a circle of unit radius. Prove that there is a point on the circle, from which the sum of the distances to these points is no less than 1983.
Prove that if the irreducible rational fraction \(p/q\) is a root of the polynomial \(P (x)\) with integer coefficients, then \(P (x) = (qx - p) Q (x)\), where the polynomial \(Q (x)\) also has integer coefficients.
Can you find
a) in the 100th line of Pascal’s triangle, the number \(1 + 2 + 3 + \dots + 98 + 99\)?
b) in the 200th line the sum of the squares of the numbers in the 100th line?
Prove there are no integer solutions for the equation \(3x^2 + 2 = y^2\).
A road of length 1 km is lit with streetlights. Each streetlight illuminates a stretch of road of length 1 m. What is the maximum number of streetlights that there could be along the road, if it is known that when any single streetlight is extinguished the street will no longer be fully illuminated?
In the number \(1234096\dots\) each digit, starting with the 5th digit is equal to the final digit of the sum of the previous 4 digits. Will the digits 8123 ever occur in that order in a row in this number?