Problems

Age
Difficulty
Found: 759

In the following example with fractions replace “stars” with different natural numbers in order to obtain an identity: \[\frac{1}{*}+\frac{1}{*}=\frac{1}{*}+\frac{1}{*}.\]

Looking back at Example 12.1 what if we additionally require all differences to be less than the smallest of the three numbers?

(a) Divide 55 walnuts into four groups consisting of different number of nuts.

(b) Divide 999 walnuts into four groups consisting of different number of nuts.

Replace "stars" with different natural numbers in order to obtain an identity:
\[\frac{1}{*}+\frac{1}{*}+\frac{1}{*}=\frac{1}{*}+\frac{1}{*}+\frac{1}{*};\]

George knows a representation of number “8” as the sum of its divisors in which only divisor “1” appears twice: \[8=4+2+1+1.\] His brother showed George that such representation exists for number “16” as well: \[16=8+4+2+1+1.\] He apologies for forgetting an example considering number “32” but he is sure once he saw such representation for this number.

(a) Help George to work out a suitable representation for number “32”;

(b) Can you think of a number which has such representation consisting of 7 terms?

(c) Of 11 terms?

(d) Can you find a number which can be represented as a sum of its divisors which are all different (pay attention that we don’t allow repeating digit “1” twice!)?

(e) What if we require this representation to consist of 11 terms?

George claims that he knows two numbers such that their quotient is equal to their product. Can we believe him? Prove him wrong or provide a suitable example.

In the context of Example 14.2 what is the answer if we have five numbers instead of four? (i.e., can we get four distinct prime numbers then?)

Now George is sure he found two numbers with the quotient equal to their sum. And on top of that their product is still equal to the same value. Can it be true?

Each pair of cities in Wonderland is connected by a flight operated by "Wonderland Airlines". How many cities are there in the country if there are \(105\) different flights? We count a flight from city \(A\) to city \(B\) as the same as city \(B\) to city \(A\) - i.e. the pair \(A\) to \(B\) and \(B\) to \(A\) counts as one flight.

(a) In a regular 10-gon we draw all possible diagonals. How many line segments are drawn? How many diagonals?

(b) Same questions for a regular 100-gon.

(c) Same questions for an arbitrary convex 100-gon.