10 numbers are written around the circle, the sum of which is equal to 100. It is known that the sum of every three numbers standing side by side is not less than 29.
Specify the smallest number \(A\) such that in any such set of numbers each of the numbers does not exceed \(A\).
In a group of friends, each two people have exactly five common acquaintances. Prove that the number of pairs of friends is divisible by 3.
At a round table, 10 boys and 15 girls were seated. It turned out that there are exactly 5 pairs of boys sitting next to each other.
How many pairs of girls are sitting next to each other?
Let \(M\) be a finite set of numbers. It is known that among any three of its elements there are two, the sum of which belongs to \(M\).
What is the largest number of elements in \(M\)?
Calculate \(\int_0^{\pi/2} (\sin^2 (\sin x) + \cos^2 (\cos x))\,dx\).
A hostess bakes a cake for some guests. Either 10 or 11 people can come to her house. What is the smallest number of pieces she needs to cut the cake into (in advance) so that it can be divided equally between 10 and 11 guests?
Let \(x\) be a natural number. Among the statements:
\(2x\) is more than 70;
\(x\) is less than 100;
\(3x\) is greater than 25;
\(x\) is not less than 10;
\(x\) is greater than 5;
three are true and two are false. What is \(x\)?
A broken calculator carries out only one operation “asterisk”: \(a*b = 1 - a/b\). Prove that using this calculator it is possible to carry out all four arithmetic operations (addition, subtraction, multiplication, division).
Prove that if you rotate through an angle of \(\alpha\) with the center at the origin, the point with the coordinates \((x, y)\), it goes to the point \((x \cos \alpha - y \sin \alpha, x \sin \alpha + y \cos \alpha)\).
Ten circles are marked on the circle. How many non-closed non-self-intersecting nine-point broken lines exist with vertices at these points?