Problems

Age
Difficulty
Found: 366

In a volleyball tournament teams play each other once. A win gives the team 1 point, a loss 0 points. It is known that at one point in the tournament all of the teams had different numbers of points. How many points did the team in second last place have at the end of the tournament, and what was the result of its match against the eventually winning team?

How many rational terms are contained in the expansion of

a) \((\sqrt 2 + \sqrt[4]{3})^{100}\);

b) \((\sqrt 2 + \sqrt[3]{3})^{300}\)?

Calculate the following sums:

a) \(\binom{5}{0} + 2\binom{5}{1} + 2^2\binom{5}{2} + \dots +2^5\binom{5}{5}\);

b) \(\binom{n}{0} - \binom{n}{1} + \dots + (-1)^n\binom{n}{n}\);

c) \(\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}\).

Show that any natural number \(n\) can be uniquely represented in the form \(n = \binom{x}{1} + \binom{y}{2} + \binom{z}{3}\) where \(x, y, z\) are integers such that \(0 \leq x < y < z\), or \(0 = x = y < z\).

Here is a fragment of the table, which is called the Leibniz triangle. Its properties are “analogous in the sense of the opposite” to the properties of Pascal’s triangle. The numbers on the boundary of the triangle are the inverses of consecutive natural numbers. Each number is equal to the sum of two numbers below it. Find the formula that connects the numbers from Pascal’s and Leibniz triangles.

Numbers \(a, b, c\) are integers with \(a\) and \(b\) being coprime. Let us assume that integers \(x_0\) and \(y_0\) are a solution for the equation \(ax + by = c\).

Prove that every solution for this equation has the same form \(x = x_0 + kb\), \(y = y_0 - ka\), with \(k\) being a random integer.