Problems

Age
Difficulty
Found: 246

A hostess bakes a cake for some guests. Either 10 or 11 people can come to her house. What is the smallest number of pieces she needs to cut the cake into (in advance) so that it can be divided equally between 10 and 11 guests?

A city in the shape of a triangle is divided into 16 triangular blocks, at the intersection of any two streets is a square (there are 15 squares in the city). A tourist began to walk around the city from a certain square and travelled along some route to some other square, whilst visiting every square exactly once. Prove that in the process of travelling the tourist at least 4 times turned by \(120^{\circ}\).

It is known that any person has at most 400,000 hairs on their head. Given that the population of London is not less than 8 million, prove that there are 20 Londoners with the same number of hairs on their heads.

26 numbers are chosen from the numbers 1, 2, 3, ..., 49, 50. Will there always be two numbers chosen whose difference is 1?

A convex polygon on a plane contains no fewer than \(m^2+1\) points with whole number co-ordinates. Prove that within the polygon there are \(m+1\) points with whole number co-ordinates that lie on a single straight line.

A sack contains 70 marbles, 20 red, 20 blue, 20 yellow, and the rest black or white. What is the smallest number of marbles that need to be removed from the sack, without looking, in order for there to be no less than 10 marbles of the same colour among the removed marbles.

Some points from a finite set are connected by line segments. Prove that two points can be found which have the same number of line segments connected to them.

There are \(2k+1\) cards numbered with the numbers \(1\) to \(2k+1\). What is the largest number of cards that can be chosen so that no number on a chosen card is equal to the sum of two numbers from two other chosen cards?

We are given 51 two-digit numbers – we will count one-digit numbers as two-digit numbers with a leading 0. Prove that it is possible to choose 6 of these so that no two of them have the same digit in the same column.