We consider a function \(y = f (x)\) defined on the whole set of real numbers and satisfying \(f (x + k) \times (1 - f (x)) = 1 + f (x)\) for some number \(k \ne 0\). Prove that \(f (x)\) is a periodic function.
Prove that the sequence \(x_n = \sin (n^2)\) does not tend to zero for \(n\) that tends to infinity.
The numbers \(a_1, a_2, \dots , a_{1985}\) are the numbers \(1, 2, \dots , 1985\) rearranged in some order. Each number \(a_k\) is multiplied by its number \(k\), and then the largest number is chosen among the resulting 1985 products. Prove that it is not less than \(993^2\).
In a dark room on a shelf there are 4 pairs of socks of two different sizes and two different colours that are not arranged in pairs. What is the minimum number of socks necessary to move from the drawer to the suitcase, without leaving the room, so that there are two pairs of socks of different sizes and colours in the suitcase?
The function \(f (x)\) for each real value of \(x\in (-\infty, + \infty)\) satisfies the equality \(f (x) + (x + 1/2) \times f (1 - x) = 1\).
a) Find \(f (0)\) and \(f (1)\). b) Find all such functions \(f (x)\).
Prove that there is a number of the form
a) \(1989 \dots 19890 \dots 0\) (the number 1989 is repeated several times, and then there are a few zeros), which is divisible by 1988;
b) \(1988 \dots 1988\), which is divisible by 1989.
Does there exist a flat quadrilateral in which the tangents of all interior angles are equal?
The numbers \(a\) and \(b\) are such that the first equation of the system \[\begin{aligned} \sin x + a & = bx \\ \cos x &= b \end{aligned}\] has exactly two solutions. Prove that the system has at least one solution.
The numbers \(a\) and \(b\) are such that the first equation of the system \[\begin{aligned} \cos x &= ax + b \\ \sin x + a &= 0 \end{aligned}\] has exactly two solutions. Prove that the system has at least one solution.
Solve the inequality: \(|x + 2000| <|x - 2001|\).