An area of airspace contains clouds. It turns out that the area can be divided by 10 aeroplanes into regions such that each region contains no more than one cloud. What is the largest number of clouds an aircraft can fly through whilst holding a straight line course.
In a communication system consisting of 2001 subscribers, each subscriber is connected with exactly \(n\) others. Determine all the possible values of \(n\).
A raisin bag contains 2001 raisins with a total weight of 1001 g, and no raisin weighs more than 1.002 g.
Prove that all the raisins can be divided onto two scales so that they show a difference in weight not exceeding 1 g.
There are 20 students in a class, and each one is friends with at least 14 others. Can you prove that there are four students in this class who are all friends?
Prove that there is no polyhedron that has exactly seven edges.
Prove that, with central symmetry, a circle transforms into a circle.
The opposite sides of a convex hexagon are pairwise equal and parallel. Prove that it has a centre of symmetry.
A parallelogram \(ABCD\) and a point \(E\) are given. Through the points \(A, B, C, D\), lines parallel to the straight lines \(EC, ED, EA,EB\), respectively, are drawn. Prove that they intersect at one point.
Prove that a circle under the axial symmetry transforms into a circle.
A quadrilateral has an axis of symmetry. Prove that this quadrilateral is either an isosceles trapezoid or is symmetric with respect to its diagonal.