Problems

Age
Difficulty
Found: 705

At the ball, there were \(n\) married couples. In each pair, the husband and wife are of the same height, but there are no two pairs of the same height. The waltz begins, and all those who came to the ball randomly divide into pairs: each gentleman dances with a randomly chosen lady.

Find the mathematical expectation of the random variable \(X\), “the number of gentlemen who are shorter than their partners”.

On weekdays, the Scattered Scientist goes to work along the circle line on the London Underground from Cannon Street station to Edgware Road station, and in the evening he goes back (see the diagram).

Entering the station, the Scientist sits down on the first train that arrives. It is known that in both directions the trains run at approximately equal intervals, and along the northern route (via Farringdon) the train goes from Cannon Street to Edgware Road or back in 17 minutes, and along the southern route (via St James Park) – 11 minutes. According to an old habit, the scientist always calculates everything. Once he calculated that, from many years of observation:

– the train going counter-clockwise, comes to Edgware Road on average 1 minute 15 seconds after the train going clockwise arrives. The same is true for Cannon Street.

– on a trip from home to work the Scientist spends an average of 1 minute less time than a trip home from work.

Find the mathematical expectation of the interval between trains going in one direction.

There are \(n\) random vectors of the form \((y_1, y_2, y_3)\), where exactly one random coordinate is equal to 1, and the others are equal to 0. They are summed up. A random vector a with coordinates \((Y_1, Y_2, Y_3)\) is obtained.

a) Find the mathematical expectation of a random variable \(a^2\).

b) Prove that \(|a|\geq \frac{1}{3}\).

An incredible legend says that one day Stirling was considering the numbers of Stirling of the second kind. During his thoughtfulness, he threw 10 regular dice on the table. After the next throw, he suddenly noticed that in the dropped combination of points there were all of the numbers from 1 to 6. Immediately Stirling reflected: what is the probability of such an event? What is the probability that when throwing 10 dice each number of points from 1 to 6 will drop out on at least one die?

Three cyclists travel in one direction along a circular track that is 300 meters long. Each of them moves with a constant speed, with all of their speeds being different. A photographer will be able to make a successful photograph of the cyclists, if all of them are on some part of the track which has a length of \(d\) meters. What is the smallest value of \(d\) for which the photographer will be able to make a successful photograph sooner or later?

The number \(x\) is such that both the sums \(S = \sin 64x + \sin 65x\) and \(C = \cos 64x + \cos 65x\) are rational numbers.

Prove that in both of these sums, both terms are rational.

Author: A.K. Tolpygo

An irrational number \(\alpha\), where \(0 <\alpha <\frac 12\), is given. It defines a new number \(\alpha_1\) as the smaller of the two numbers \(2\alpha\) and \(1 - 2\alpha\). For this number, \(\alpha_2\) is determined similarly, and so on.

a) Prove that for some \(n\) the inequality \(\alpha_n <3/16\) holds.

b) Can it be that \(\alpha_n> 7/40\) for all positive integers \(n\)?

There was a football match of 10 versus 10 players between a team of liars (who always lie) and a team of truth-tellers (who always tell the truth). After the match, each player was asked: “How many goals did you score?” Some participants answered “one”, Callum said “two”, some answered “three”, and the rest said “five”. Is Callum lying if it is known that the truth-tellers won with a score of 20:17?

It is known that \(a = x+y + \sqrt{xy}\), \(b = y + z + \sqrt{yz}\), \(c = x + z + \sqrt{xz}\). where \(x > 0\), \(y > 0\), \(z > 0\). Prove that \(a + b + \sqrt{ab} > c\).