What is the smallest number of cells that can be chosen on a \(15\times15\) board so that a mouse positioned on any cell on the board touches at least two marked cells? (The mouse also touches the cell on which it stands.)
a) There are three identical large vessels. In one there are 3 litres of syrup, in the other – 20 litres of water, and the third is empty. You can pour all the liquid from one vessel into another or into a sink. You can choose two vessels and pour into one of them liquid from the third, until the liquid levels in the selected vessels are equal. How can you get 10 litres of diluted 30% syrup?
b) The same, but there is \(N\) l of water. At what integer values of \(N\) can you get 10 liters of diluted 30% syrup?
Monica is in a broken space buggy at a distance of 18 km from the Lunar base, in which Rachel sits. There is a stable radio communication system between them. The air reserve in the space buggy is enough for 3 hours, in addition, Monica has an air cylinder for the spacesuit, with an air reserve of 1 hour. Rachel has a lot of cylinders with an air supply of 2 hours each. Rachel can not carry more than two cylinders at the same time (one of them she uses herself). The speed of movement on the Moon in the suit is 6 km/h. Could Rachel save Monica and not die herself?
301 schoolchildren came to the school’s New Year’s party in the city of Moscow. Some of them always tell the truth, and the rest always lie. Each of some 200 students said: “If I leave the hall, then among the remaining students, the majority will be liars.” Each of the other schoolchildren said: “If I leave the room, then among the remaining students, there will be twice as many liars as those who speak the truth.” How many liars were at the party?
The pupils of class 5A had a total of 2015 pencils. One of them lost a box with five pencils, and instead bought a box with 50 pencils. How many pencils do the pupils of class 5A now have?
What is the largest number of horses that can be placed on an \(8\times8\) chessboard so that no horse touches more than seven of the others?
Two play the following game. There is a pile of stones. The first takes either 1 stone or 10 stones with each turn. The second takes either m or n stones with every turn. They take turns, beginning with the first player. He who can not make a move, loses. It is known that for any initial quantity of stones, the first one can always play in such a way as to win (for any strategy of the second player). What values can m and n take?
On the left bank of the river, there were 5 physicists and 5 chemists. All of them need to cross to the right bank. There is a two-seater boat. On the right bank at any time there can not be exactly three chemists or exactly three physicists. How do they all cross over by making 9 trips to the right side?
A group of children from two classes came to an after school club: Jack, Ben, Fred, Louis, Claudia, Janine and Charlie. To the question: “How many of your classmates are here?” everyone honestly answered with either “Two” or “Three”. But the boys thought that they were only being asked about the boy classmates, and the girls correctly understood that they were asking about everyone. Is Charlie a boy or a girl?
Hannah recorded the equality \(MA \times TE \times MA \times TI \times CA = 2016000\) and suggested that Charlie replace the same letters with the same numbers, and different letters with different digits, so that the equality becomes true. Does Charlie have the possibility of fulfilling the task?