Problems

Age
Difficulty
Found: 246

a) In a group of 4 people, who speak different languages, any three of them can communicate with one another; perhaps by one translating for two others. Prove that it is always possible to split them into pairs so that the two members of every pair have a common language.

b) The same, but for a group of 100 people.

c) The same, but for a group of 102 people.

There are two identical gears with 14 teeth on a common shaft. They are aligned and four pairs of teeth are removed.

Prove that the gears can be rotated so that they form a complete gear (one containing no gaps).

If a class of 30 children is seated in the auditorium of a cinema there will always be at least one row containing no fewer than two classmates. If we do the same with a class of 26 children then at least three rows will be empty. How many rows are there in the cinema?

In order to glaze 15 windows of different shapes and sizes, 15 pieces of glass are prepared exactly for the size of the windows (windows are such that each window should have one glass). The glazier, not knowing that the glass is specifically selected for the size of each window, works like this: he approaches a certain window and sorts out the unused glass until he finds one that is large enough (that is, either an exactly suitable piece or one from which the right size can be cut), if there is no such glass, he goes to the next window, and so on, until he has assessed each window. It is impossible to make glass from several parts. What is the maximum number of windows which can be left unglazed?

A group of 20 tourists go on a trip. The oldest member of the group is 35, the youngest is 20. Is it true that there are members of the group that are the same age?

What is the minimum number of lottery tickets for the Sport Lotto that it is necessary to buy in order to guarantee that at least one of the tickets will have one number correct. On any single ticket you can choose 6 of the available numbers 1 to 49.

A class contains 25 pupils. It is known that within any group of 3 pupils there are two friends. Prove that there is a pupil who has no fewer than 12 friends.