Problems

Age
Difficulty
Found: 30

An incredible legend says that one day Stirling was considering the numbers of Stirling of the second kind. During his thoughtfulness, he threw 10 regular dice on the table. After the next throw, he suddenly noticed that in the dropped combination of points there were all of the numbers from 1 to 6. Immediately Stirling reflected: what is the probability of such an event? What is the probability that when throwing 10 dice each number of points from 1 to 6 will drop out on at least one die?

In a row there are 2023 numbers. The first number is 1. It is known that each number, except the first and the last, is equal to the sum of two neighboring ones. Find the last number.

Prove that every pair of consecutive Fibonacci numbers are coprime. That is, they share no common factors other than 1.

Calculate the following: \(F_1^2-F_0F_2\), \(F_2^2-F_1F_3\), \(F_3^2-F_2F_4\), \(F_4^2-F_3F_5\) and \(F_5^2-F_4F_6\). What do you notice?

Work out \(F_3^2-F_0F_6\), \(F_4^2-F_1F_7\), \(F_5^2-F_2F_8\) and \(F_6^2-F_3F_9\). What pattern do you spot?

Can every whole number be written as the sum of two Fibonacci numbers? If yes, then prove it. If not, then give an example of a number that can’t be. The two Fibonacci numbers don’t have to be different.

What’s \(\sum_{i=0}^nF_i^2=F_0^2+F_1^2+F_2^2+...+F_{n-1}^2+F_n^2\) in terms of just \(F_n\) and \(F_{n+1}\)?

What are the ratios \(\frac{F_2}{F_1}\), \(\frac{F_3}{F_2}\), and so on until \(\frac{F_7}{F_6}\)? What do you notice about them?

In the example, we saw that \(\varphi^2=\varphi+1\). Can you write \(\varphi^3\) in the form \(a\varphi+b\), where \(a\) and \(b\) are positive integers?

Simplify \(F_0-F_1+F_2-F_3+...-F_{2n-1}+F_{2n}\), where \(n\) is a positive integer.