Suppose that there are 15 prime numbers forming an arithmetic progression with a difference of \(d\). Prove that \(d >30,000\).
Prove that the function \(\cos \sqrt {x}\) is not periodic.
Method of iterations. In order to approximately solve an equation, it is allowed to write \(f (x) = x\), by using the iteration method. First, some number \(x_0\) is chosen, and then the sequence \(\{x_n\}\) is constructed according to the rule \(x_{n + 1} = f (x_n)\) (\(n \geq 0\)). Prove that if this sequence has the limit \(x * = \lim \limits_ {n \to \infty} x_n\), and the function \(f (x)\) is continuous, then this limit is the root of the original equation: \(f (x ^*) = x^*\).
Prove that for a monotonically increasing function \(f (x)\) the equations \(x = f (f (x))\) and \(x = f (x)\) are equivalent.
Prove that the 13th day of the month is more likely to occur on a Friday than on other days of the week. It is assumed that we live in the Gregorian style calendar.
Find the largest value of the expression \(a + b + c + d - ab - bc - cd - da\), if each of the numbers \(a\), \(b\), \(c\) and \(d\) belongs to the interval \([0, 1]\).
A function \(f\) is given, defined on the set of real numbers and taking real values. It is known that for any \(x\) and \(y\) such that \(x > y\), the inequality \((f (x)) ^2 \leq f (y)\) is true. Prove that the set of values generated by the function is contained in the interval \([0,1]\).
The numerical function \(f\) is such that for any \(x\) and \(y\) the equality \(f (x + y) = f (x) + f (y) + 80xy\) holds. Find \(f(1)\) if \(f(0.25) = 2\).
Solve the system of equations: \[\begin{aligned} \sin y - \sin x &= x-y; &&\text{and}\\ \sin y - \sin z &= z-y; && \text{and}\\ x-y+z &= \pi. \end{aligned}\]
The functions \(f\) and \(g\) are defined on the entire number line and are reciprocal. It is known that \(f\) is represented as a sum of a linear and a periodic function: \(f (x) = kx + h (x)\), where \(k\) is a number, and \(h\) is a periodic function. Prove that \(g\) is also represented in this form.