Problems

Age
Difficulty
Found: 32

Prove that for any odd natural number, \(a\), there exists a natural number, \(b\), such that \(2^b - 1\) is divisible by \(a\).

Prove that, for any integer \(n\), among the numbers \(n, n + 1, n + 2, \dots , n + 9\) there is at least one number that is mutually prime with the other nine numbers.

All of the integers from 1 to 64 are written in an \(8 \times 8\) table. Prove that in this case there are two adjacent numbers, the difference between which is not less than 5. (Numbers that are in cells which share a common side are called adjacent).

Prove that amongst the numbers of the form \[19991999\dots 19990\dots 0\] – that is 1999 a number of times, followed by a number of 0s – there will be at least one divisible by 2001.

a) Prove that within any 6 whole numbers there will be two that have a difference between them that is a multiple of 5.

b) Will this statement remain true if instead of the difference we considered the total?