Problems

Age
Difficulty
Found: 53

Consider a chess board of size \(n \times n\). It is required to move a rook from the bottom left corner to the upper right corner. You can move only up and to the right, without going into the cells of the main diagonal and the one below it. (The rook is on the main diagonal only initially and in the final moment in time.) How many possible routes does the rook have?

Let \((1 + \sqrt {2} + \sqrt {3})^n = p_n + q_n \sqrt {2} + r_n \sqrt {3} + s_n \sqrt {6}\) for \(n \geq 0\). Find:

a) \(\lim \limits_ {n \to \infty} {\frac {p_n} {q_n}}\); b) \(\lim \limits_ {n \to \infty} {\frac {p_n} {r_n}}\); c) \(\lim \limits_ {n \to \infty} {\frac {p_n} {s_n}}\);

Find the generating functions of the sequences of Chebyshev polynomials of the first and second kind: \[F_T(x,z) = \sum_{n=0}^{\infty}T_n(x)z^n;\quad F_U(x,z) = \sum_{n=0}^{\infty}U_n(X)z^n.\]

Definitions of Chebyshev polynomials can be found in the handbook.

We denote by \(P_{k, l}(n)\) the number of partitions of the number \(n\) into at most \(k\) terms, each of which does not exceed \(l\). Prove the equalities:

a) \(P_{k, l}(n) - P_{k, l-1}(n) = P_{k-1, l}(n-l)\);

b) \(P_{k, l}(n) - P_{k-1, l} (n) = P_{k, l-1}(n-k)\);

c) \(P_{k, l}(n) = P_{l, k} (n)\);

d) \(P_{k, l}(n) = P_{k, l} (kl - n)\).

A group of several friends was in correspondence in such a way that each letter was received by everyone except for the sender. Each person wrote the same number of letters, as a result of which all together the friends received 440 letters. How many people could be in this group of friends?

In a line 40 signs are written out: 20 crosses and 20 zeros. In one move, you can swap any two adjacent signs. What is the least number of moves in which it is guaranteed that you can ensure that some 20 consecutive signs are crosses?

Author: Shapovalov A.V.

Let \(A\) and \(B\) be two rectangles. From rectangles equal to \(A\), a rectangle similar to \(B\) was created.

Prove that from rectangles equal to \(B\), you can create a rectangle similar to \(A\).

Author: A. Glazyrin

In the coordinate space, all planes with the equations \(x \pm y \pm z = n\) (for all integers \(n\)) were carried out. They divided the space into tetrahedra and octahedra. Suppose that the point \((x_0, y_0, z_0)\) with rational coordinates does not lie in any plane. Prove that there is a positive integer \(k\) such that the point \((kx_0, ky_0, kz_0)\) lies strictly inside some octahedron from the partition.

Authors: B. Vysokanov, N. Medved, V. Bragin

The teacher grades tests on a scale from 0 to 100. The school can change the upper bound of the scale to any other natural number, recalculating the estimates proportionally and rounding up to integers. A non-integer number, when rounded, changes to the nearest integer; if the fractional part is equal to 0.5, the direction of rounding can be either up or down and it can be different for each question. (For example, an estimate of 37 on a scale of 100 after recalculation in the scale of 40 will go to \(37 \cdot 40/100 = 14.8\) and will be rounded to 15).

The students of Peter and Valerie got marks, which are not 0 and 100. Prove that the school can do several conversions so that Peter’s mark becomes b and Valerie’s mark becomes a (both marks are recalculated simultaneously).