Problems

Age
Difficulty
Found: 82

A spherical planet is surrounded by 25 point asteroids. Prove, that at any given moment there will be a point on the surface of the planet from which an astronomer will not be able to see more than 11 asteroids.

There are \(n\) cities in a country. Between each two cities an air service is established by one of two airlines. Prove that out of these two airlines at least one is such that from any city you can get to any other city whilst traveling on flights only of this airline.

In the secret service, there are \(n\) agents – 001, 002, ..., 007, ..., \(n\). The first agent monitors the one who monitors the second, the second monitors the one who monitors the third, etc., the nth monitors the one who monitors the first. Prove that \(n\) is an odd number.

You are given a table of size \(m \times n\) (\(m, n > 1\)). In it, the centers of all cells are marked. What is the largest number of marked centers that can be chosen so that no three of them are the vertices of a right triangle?

There are several cities (more than one) in a country; some pairs of cities are connected by roads. It is known that you can get from every city to any other city by driving along several roads. In addition, the roads do not form cycles, that is, if you leave a certain city on some road and then move so as not to pass along one road twice, it is impossible to return to the initial city. Prove that in this country there are at least two cities, each of which is connected by a road with exactly one city.

In the TV series “The Secret of Santa Barbara” there are 20 characters. Each episode contains one of the events: some character discovers the Mystery, some character discovers that someone knows the Mystery, some character discovers that someone does not know the Mystery. What is the maximum number of episodes that this tv series can last?

On the planet Tau Ceti, the landmass takes up more than half the surface area. Prove that the Tau Cetians can drill a hole through the centre of their planet that connects land to land.

A raisin bag contains 2001 raisins with a total weight of 1001 g, and no raisin weighs more than 1.002 g.

Prove that all the raisins can be divided onto two scales so that they show a difference in weight not exceeding 1 g.

Find the first 99 decimal places in the number expansion of \((\sqrt{26} + 5)^{99}\).