Problems

Age
Difficulty
Found: 394

Peter has 28 classmates. Each 2 out of these 28 have a different number of friends in the class. How many friends does Peter have?

For each pair of real numbers \(a\) and \(b\), consider the sequence of numbers \(p_n = \lfloor 2 \{an + b\}\rfloor\). Any \(k\) consecutive terms of this sequence will be called a word. Is it true that any ordered set of zeros and ones of length \(k\) is a word of the sequence given by some \(a\) and \(b\) for \(k = 4\); when \(k = 5\)?

Note: \(\lfloor c\rfloor\) is the integer part, \(\{c\}\) is the fractional part of the number \(c\).

Prove that any convex polygon contains not more than \(35\) vertices with an angle of less than \(170^\circ\).

A circle is covered with several arcs. These arcs can overlap one another, but none of them cover the entire circumference. Prove that it is always possible to select several of these arcs so that together they cover the entire circumference and add up to no more than \(720^{\circ}\).

\(x_1\) is the real root of the equation \(x^2 + ax + b = 0\), \(x_2\) is the real root of the equation \(x^2 - ax - b = 0\).

Prove that the equation \(x^2 + 2ax + 2b = 0\) has a real root, enclosed between \(x_1\) and \(x_2\). (\(a\) and \(b\) are real numbers).

We are given a \(100\times 100\) square grid and \(N\) counters. All of the possible arrangements of the counters on the grid which follow the following rule are considered: no two counters lie in adjacent squares.

What is the largest value of \(N\) for which, in every single possible arrangement of counters following this rule, it is possible to find at least one counter such that moving it to an adjacent square does not break the rule. Squares are considered adjacent if they share a side.

What is the largest number of counters that can be put on the cells of a chessboard so that on each horizontal, vertical and diagonal (not only on the main ones) there is an even number of counters?

Seven triangular pyramids stand on the table. For any three of them, there is a horizontal plane that intersects them along triangles of equal area. Prove that there is a plane intersecting all seven pyramids along triangles of equal area.