Problems

Age
Difficulty
Found: 68

In a \(10 \times 10\) square, all of the cells of the upper left \(5 \times 5\) square are painted black and the rest of the cells are painted white. What is the largest number of polygons that can be cut from this square (on the boundaries of the cells) so that in every polygon there would be three times as many white cells than black cells? (Polygons do not have to be equal in shape or size.)

A firm recorded its expenses in pounds for 100 items, creating a list of 100 numbers (with each number having no more than two decimal places). Each accountant took a copy of the list and found an approximate amount of expenses, acting as follows. At first, he arbitrarily chose two numbers from the list, added them, discarded the sum after the decimal point (if there was anything) and recorded the result instead of the selected two numbers. With the resulting list of 99 numbers, he did the same, and so on, until there was one whole number left in the list. It turned out that in the end all the accountants ended up with different results. What is the largest number of accountants that could work in the company?

An abstract artist took a wooden \(5\times 5\times 5\) cube and divided each face into unit squares. He painted each square in one of three colours – black, white, and red – so that there were no horizontally or vertically adjacent squares of the same colour. What is the smallest possible number of squares the artist could have painted black following this rule? Unit squares which share a side are considered adjacent both when the squares lie on the same face and when they lie on adjacent faces.

Are there functions \(p (x)\) and \(q (x)\) such that \(p (x)\) is an even function and \(p (q (x))\) is an odd function (different from identically zero)?

A pharmacist has three weights, with which he measured out and gave 100 g of iodine to one buyer, 101 g of honey to another, and 102 g of hydrogen peroxide to the third. He always placed the weights on one side of the scales, and the goods on the other. Could it be that each weight used is lighter than 90 grams?

Fred chose 2017 (not necessarily different) natural numbers \(a_1, a_2, \dots , a_{2017}\) and plays by himself in the following game. Initially, he has an unlimited supply of stones and 2017 large empty boxes. In one move Fred adds a1 stones to any box (at his choice), in any of the remaining boxes (of his choice) – \(a_2\) stones, ..., finally, in the remaining box – \(a_{2017}\) stones. His purpose is to ensure that eventually all the boxes have an equal number of stones. Could he have chosen the numbers so that the goal could be achieved in 43 moves, but is impossible for a smaller non-zero number of moves?

Gary drew an empty table of \(50 \times 50\) and wrote on top of each column and to the left of each row a number. It turned out that all 100 written numbers are different, and 50 of them are rational, and the remaining 50 are irrational. Then, in each cell of the table, he wrote down a product of numbers written at the top of its column and to the left of the row (the “multiplication table”). What is the largest number of products in this table which could be rational numbers?

In a tournament, 100 wrestlers are taking part, all of whom have different strengths. In any fight between two wrestlers, the one who is stronger always wins. In the first round the wrestlers broke into random pairs and fought each other. For the second round, the wrestlers once again broke into random pairs of rivals (it could be that some pairs will repeat). The prize is given to those who win both matches. Find:

a) the smallest possible number of tournament winners;

b) the mathematical expectation of the number of tournament winners.

In each cell of a board of size \(5\times5\) a cross or a nought is placed, and no three crosses are positioned in a row, either horizontally, vertically or diagonally. What is the largest number of crosses on the board?

Three cyclists travel in one direction along a circular track that is 300 meters long. Each of them moves with a constant speed, with all of their speeds being different. A photographer will be able to make a successful photograph of the cyclists, if all of them are on some part of the track which has a length of \(d\) meters. What is the smallest value of \(d\) for which the photographer will be able to make a successful photograph sooner or later?