Find the area of the figures shown below.
101 random points are chosen inside a unit square, including on the edges of the square, so that no three points lie on the same straight line. Prove that there exist some triangles with vertices on these points, whose area does not exceed 0.01.
9 straight lines each divide a square into two quadrilaterals, with their areas having a ratio of \(2:3\). Prove that at least three of the nine lines pass through the same point.
Let \(E\) and \(F\) be the midpoints of the sides \(BC\) and \(AD\) of the parallelogram \(ABCD\). Find the area of the quadrilateral formed by the lines \(AE, ED, BF\) and \(FC\), if it is known that the area \(ABCD\) is equal to \(S\).
A polygon is drawn around a circle of radius \(r\). Prove that its area is equal to \(pr\), where \(p\) is the semiperimeter of the polygon.
The point \(E\) is located inside the parallelogram \(ABCD\). Prove that \(S_{ABE} + S_{CDE} = S_{BCE} + S_{ADE}\).
The diagonals of the quadrilateral \(ABCD\) intersect at the point \(O\). Prove that \(S_{AOB} = S_{COD}\) if and only if \(BC \parallel AD\).
A square of side 15 contains 20 non-overlapping unit squares. Prove that it is possible to place a circle of radius 1 inside the large square, so that it does not overlap with any of the unit squares.
a) A square of area 6 contains three polygons, each of area 3. Prove that among them there are two polygons that have an overlap of area no less than 1.
b) A square of area 5 contains nine polygons of area 1. Prove that among them there are two polygons that have an overlap of area no less than \(\frac{1}{9}\).
The height of the room is 3 meters. When it was being renovated, it turned out that more paint was needed on each wall than on the floor. Can the area of the floor of this room be more than 10 square meters?