You are given 1002 different integers that are no greater than 2000. Prove that it is always possible to choose three of the given numbers so that the sum of two of them is equal to the third.
Will this still always be possible if we are given 1001 integers rather than 1002?
In a volleyball tournament teams play each other once. A win gives the team 1 point, a loss 0 points. It is known that at one point in the tournament all of the teams had different numbers of points. How many points did the team in second last place have at the end of the tournament, and what was the result of its match against the eventually winning team?
An endless board is painted in three colours (each cell is painted in one of the colours). Prove that there are four cells of the same colour, located at the vertices of the rectangle with sides parallel to the side of one cell.
Prove that amongst any 11 different decimal fractions of infinite length, there will be two whose digits in the same column – 10ths, 100s, 1000s, etc – coincide (are the same) an infinite number of times.
On a plane, six points are given so that no three of them lie on the same line. Each pair of points is connected by a blue or red segment.
Prove that among these points three such points can be chosen so that all sides of the triangle formed by them will be of the same colour.
Find the sums of the following series:
a) \({\frac {1} {1 \times 2}} + {\frac {1} {2 \times 3}} + {\frac {1} {3 \times 4}} + {\frac {1} {4 \times 5}} + \dots\);
b) \({\frac {1} {1 \times 2 \times 3}} + {\frac {1} {2 \times 3 \times 4}} + {\frac {1} {3 \times 4 \times 5}} + {\frac {1} {4 \times 5 \times 6}} + \dots\);
c) \({\frac {0!} {r!}} + {\frac {1!} {(r-1)!}} + {\frac {2!} {(r-2) !}} + {\frac {3!} {(r-3)!}} + \dots\) for \(r \geq 2\).
Let \(a\), \(b\), \(c\) be integers; where \(a\) and \(b\) are not equal to zero.
Prove that the equation \(ax + by = c\) has integer solutions if and only if \(c\) is divisible by \(d = \mathrm{GCD} (a, b)\).
Could it be that a) \(\sigma(n) > 3n\); b) \(\sigma(n) > 100n\)?
The numbers \(1, 2,\dots ,99\) are written on 99 cards. Then the cards are shuffled and placed with the number facing down. On the blank side of the cards, the numbers \(1, 2, \dots , 99\) are once again written.
The sum of the two numbers on each card are calculated, and the product of these 99 summations is worked out. Prove that the end result will be an even number.
Prove that any \(n\) numbers \(x_1,\dots , x_n\) that are not pairwise congruent modulo \(n\), represent a complete system of residues, modulo \(n\).