Problems

Age
Difficulty
Found: 246

7 different digits are given. Prove that for any natural number \(n\) there is a pair of these digits, the sum of which ends in the same digit as the number.

In a group of seven boys, everyone has at least three brothers who are in that group. Prove that all seven are brothers.

A council of 2,000 deputies decided to approve a state budget containing 200 items of expenditure. Each deputy prepared his draft budget, which indicated for each item the maximum allowable, in his opinion, amount of expenditure, ensuring that the total amount of expenditure did not exceed the set value of \(S\). For each item, the board approves the largest amount of expenditure that is agreed to be allocated by no fewer than \(k\) deputies. What is the smallest value of \(k\) for which we can ensure that the total amount of approved expenditures does not exceed \(S\)?

Prove that there is a number of the form

a) \(1989 \dots 19890 \dots 0\) (the number 1989 is repeated several times, and then there are a few zeros), which is divisible by 1988;

b) \(1988 \dots 1988\), which is divisible by 1989.

A board of size \(2005\times2005\) is divided into square cells with a side length of 1 unit. Some board cells are numbered in some order by numbers 1, 2, ... so that from any non-numbered cell there is a numbered cell within a distance of less than 10. Prove that there can be found two cells with a distance between them of less than 150, which are numbered by numbers that differ by more than 23. (The distance between the cells is the distance between their centres.)

Prove that amongst the numbers of the form \[19991999\dots 19990\dots 0\] – that is 1999 a number of times, followed by a number of 0s – there will be at least one divisible by 2001.

Four friends came to an ice-rink, each with her brother. They broke up into pairs and started skating. It turned out that in each pair the “gentleman” was taller than the “lady” and no one is skating with his sister. The tallest boy in the group was Sam Smith, Peter Potter, then Luisa Potter, Joe Simpson, Laura Simpson, Dan Caldwell, Jane Caldwell and Hannah Smith. Determine who skated with whom.

a) Prove that within any 6 whole numbers there will be two that have a difference between them that is a multiple of 5.

b) Will this statement remain true if instead of the difference we considered the total?

Is it possible to arrange 44 marbles into 9 piles, so that the number of marbles in each pile is different?