Problems

Age
Difficulty
Found: 62

The sequence of numbers \(a_1, a_2, a_3, \dots\) is given by the following conditions \(a_1 = 1\), \(a_{n + 1} = a_n + \frac {1} {a_n^2}\) (\(n \geq 0\)).

Prove that

a) this sequence is unbounded;

b) \(a_{9000} > 30\);

c) find the limit \(\lim \limits_ {n \to \infty} \frac {a_n} {\sqrt [3] n}\).

The point \(O\), lying inside the triangle \(ABC\), is connected by segments with the vertices of the triangle. Prove that the variance of the set of angles \(AOB\), \(AOC\) and \(BOC\) is less than a) \(10\pi ^2/27\); b) \(2\pi ^2/9\).

Author: A.K. Tolpygo

12 grasshoppers sit on a circle at various points. These points divide the circle into 12 arcs. Let’s mark the 12 mid-points of the arcs. At the signal the grasshoppers jump simultaneously, each to the nearest clockwise marked point. 12 arcs are formed again, and jumps to the middle of the arcs are repeated, etc. Can at least one grasshopper return to his starting point after he has made a) 12 jumps; b) 13 jumps?

Three cyclists travel in one direction along a circular track that is 300 meters long. Each of them moves with a constant speed, with all of their speeds being different. A photographer will be able to make a successful photograph of the cyclists, if all of them are on some part of the track which has a length of \(d\) meters. What is the smallest value of \(d\) for which the photographer will be able to make a successful photograph sooner or later?

Author: L.N. Vaserstein

For any natural numbers \(a_1, a_2, \dots , a_m\), no two of which are equal to each other and none of which is divisible by the square of a natural number greater than one, and also for any integers and non-zero integers \(b_1, b_2, \dots , b_m\) the sum is not zero. Prove this.

Four lamps need to be hung over a square ice-rink so that they fully illuminate it. What is the minimum height needed at which to hang the lamps if each lamp illuminates a circle of radius equal to the height at which it hangs?

In a corridor of length 100 m, 20 sections of red carpet are laid out. The combined length of the sections is 1000 m. What is the largest number there can be of distinct stretches of the corridor that are not covered by carpet, given that the sections of carpet are all the same width as the corridor?

It is known that a camera located at \(O\) cannot see the objects \(A\) and \(B\), where the angle \(AOB\) is greater than \(179^\circ\). 1000 such cameras are placed in a Cartesian plane. All of the cameras simultaneously take a picture. Prove that there will be a picture taken in which no more than 998 cameras are visible.

Two identical gears have 32 teeth. They were combined and 6 pairs of teeth were simultaneously removed. Prove that one gear can be rotated relative to the other so that in the gaps in one gear where teeth were removed the second gear will have whole teeth.