Prove that the infinite decimal \(0.1234567891011121314 \dots\) (after the decimal point, all of the natural numbers are written out in order) is an irrational number.
Are there any irrational numbers \(a\) and \(b\) such that the degree of \(a^b\) is a rational number?
Three people play table tennis, and the player who lost the game gives way to the player who did not participate in it. As a result, it turned out that the first player played 10 games and the second played 21 games. How many games did the third player play?
10 numbers are written around the circle, the sum of which is equal to 100. It is known that the sum of every three numbers standing side by side is not less than 29.
Specify the smallest number \(A\) such that in any such set of numbers each of the numbers does not exceed \(A\).
In a group of friends, each two people have exactly five common acquaintances. Prove that the number of pairs of friends is divisible by 3.
Prove that the equation \[a_1 \sin x + b_1 \cos x + a_2 \sin 2x + b_2 \cos 2x + \dots + a_n \sin nx + b_n \cos nx = 0\] has at least one root for any values of \(a_1 , b_1, a_2, b_2, \dots, a_n, b_n\).
At a round table, 10 boys and 15 girls were seated. It turned out that there are exactly 5 pairs of boys sitting next to each other.
How many pairs of girls are sitting next to each other?
Solve the equation \(2x^x = \sqrt {2}\) for positive numbers.
Let \(M\) be a finite set of numbers. It is known that among any three of its elements there are two, the sum of which belongs to \(M\).
What is the largest number of elements in \(M\)?
Two players play the following game. They take turns. One names two numbers that are at the ends of a line segment. The next then names two other numbers, which are at the ends of a segment nested in the previous one. The game goes on indefinitely. The first aims to have at least one rational number within the intersection of all of these segments, and the second aims to prevent such occurring. Who wins in this game?