Sam and Lena have several chocolates, each weighing not more than 100 grams. No matter how they share these chocolates, one of them will have a total weight of chocolate that does not exceed 100 grams. What is the maximum total weight of all of the chocolates?
Two friends went simultaneously from A to B. The first went by bicycle, the second – by car at a speed five times faster than the first. Halfway along the route, the car was in an accident, and the rest of the way the motorist walked on foot at a speed half of the speed of the cyclist. Which of them arrived at B first?
Andrew drives his car at a speed of 60 km/h. He wants to travel every kilometre 1 minute faster. By how much should he increase his speed?
A tourist walked 3.5 hours, and for every period of time, in one hour, he walked exactly 5 km. Does this mean that his average speed is 5 km/h?
In a volleyball tournament teams play each other once. A win gives the team 1 point, a loss 0 points. It is known that at one point in the tournament all of the teams had different numbers of points. How many points did the team in second last place have at the end of the tournament, and what was the result of its match against the eventually winning team?
In a one-on-one tournament 10 chess players participate. What is the least number of rounds after which the single winner could have already been determined? (In each round, the participants are broken up into pairs. Win – 1 point, draw – 0.5 points, defeat – 0).
16 teams took part in a handball tournament where a victory was worth 2 points, a draw – 1 point and a defeat – 0 points. All teams scored a different number of points, and the team that ranked seventh, scored 21 points. Prove that the winning team drew at least once.
In a school football tournament, 8 teams participate, each of which plays equally well in football. Each game ends with the victory of one of the teams. A randomly chosen by a draw number determines the position of the teams in the table:
What is the probability that teams \(A\) and \(B\):
a) will meet in the semifinals;
b) will meet in the finals.
In the magical land of Anchuria there is a drafts championship made up of several rounds. The days and cities in which the rounds are carried out are determined by a draw. According to the rules of the championship, no two rounds can take place in one city, and no two rounds can take place on one day. Among the fans, a lottery is arranged: the main prize is given to those who correctly guess, before the start of the championship, in which cities and on which days all of the round will take place. If no one guesses, then the main prize will go to the organising committee of the championship. In total, there are eight cities in Anchuria, and the championship is only allotted eight days. How many rounds should there be in the championship, so that the organising committee is most likely to receive the main prize?
40% of adherents of some political party are women. 70% of the adherents of this party are townspeople. At the same time, 60% of the townspeople who support the party are men. Are the events “the adherent of the party is a townsperson” and “the adherent of party is a woman” independent?