Why are the equalities \(11^2 = 121\) and \(11^3 = 1331\) similar to the lines of Pascal’s triangle? What is \(11^4\) equal to?
How many four-digit numbers can be made using the numbers 1, 2, 3, 4 and 5, if:
a) no digit is repeated more than once;
b) the repetition of digits is allowed;
c) the numbers should be odd and there should not be any repetition of digits?
Prove that in a three-digit number, that is divisible by 37, you can always rearrange the numbers so that the new number will also be divisible by 37.
Prove that for any natural number there is a multiple of it, the decimal notation of which consists of only 0 and 1.
Without calculating the answer to \(2^{30}\), prove that it contains at least two identical digits.
To a certain number, we add the sum of its digits and the answer we get is 2014. Give an example of such a number.
There are two symmetrical cubes. Is it possible to write some numbers on their faces so that the sum of the points when throwing these cubes on the upwards facing face on landing takes the values 1, 2, ..., 36 with equal probabilities?
Author: A.K. Tolpygo
An irrational number \(\alpha\), where \(0 <\alpha <\frac 12\), is given. It defines a new number \(\alpha_1\) as the smaller of the two numbers \(2\alpha\) and \(1 - 2\alpha\). For this number, \(\alpha_2\) is determined similarly, and so on.
a) Prove that for some \(n\) the inequality \(\alpha_n <3/16\) holds.
b) Can it be that \(\alpha_n> 7/40\) for all positive integers \(n\)?
Prove that for any positive integer \(n\), it is always possible to find a number, consisting of the digits \(1\) and \(2,\) that is divisible by \(2^n\). (For example, \(2\) is divisible by \(2\), \(12\) is divisible by \(4,\) \(112\) is divisible by \(8,\) \(2112\) is divisible by \(16\) and so on...).
Let’s call a natural number good if in its decimal record we have the numbers 1, 9, 7, 3 in succession, and bad if otherwise. (For example, the number 197,639,917 is bad and the number 116,519,732 is good.) Prove that there exists a positive integer \(n\) such that among all \(n\)-digit numbers (from \(10^{n-1}\) to \(10^{n-1}\)) there are more good than bad numbers.
Try to find the smallest possible \(n\).