Problems

Age
Difficulty
Found: 59

Valentina added a number (not equal to 0) taken to the power of four and the same number to the power two and reported the result to Peter. Can Peter determine the unique number that Valentina chose?

Is it possible to:

a) load two coins so that the probability of “heads” and “tails” were different, and the probability of getting any of the combinations “tails, tails,” “heads, tails”, “heads, heads” be the same?

b) load two dice so that the probability of getting any amount from 2 to 12 would be the same?

The segment \(OA\) is given. From the end of the segment \(A\) there are 5 segments \(AB_1, AB_2, AB_3, AB_4, AB_5\). From each point \(B_i\) there can be five more new segments or not a single new segment, etc. Can the number of free ends of the constructed segments be 1001? By the free end of a segment we mean a point belonging to only one segment (except point \(O\)).

There is a system of equations \[\begin{aligned} * x + * y + * z &= 0,\\ * x + * y + * z &= 0,\\ * x + * y + * z &= 0. \end{aligned}\] Two people alternately enter a number instead of a star. Prove that the player that goes first can always ensure that the system has a non-zero solution.

Two people play a game with the following rules: one of them guesses a set of integers \((x_1, x_2, \dots , x_n)\) which are single-valued digits and can be either positive or negative. The second person is allowed to ask what is the sum \(a_1x_1 + \dots + a_nx_n\), where \((a_1, \dots ,a_n)\) is any set. What is the smallest number of questions for which the guesser recognizes the intended set?

In a dark room on a shelf there are 4 pairs of socks of two different sizes and two different colours that are not arranged in pairs. What is the minimum number of socks necessary to move from the drawer to the suitcase, without leaving the room, so that there are two pairs of socks of different sizes and colours in the suitcase?