Peter and 9 other people play such a game: everyone rolls a dice. The player receives a prize if he or she rolled a number that no one else was able to roll.
a) What is the probability that Peter will receive a prize?
b) What is the probability that at least someone will receive a prize?
An incredible legend says that one day Stirling was considering the numbers of Stirling of the second kind. During his thoughtfulness, he threw 10 regular dice on the table. After the next throw, he suddenly noticed that in the dropped combination of points there were all of the numbers from 1 to 6. Immediately Stirling reflected: what is the probability of such an event? What is the probability that when throwing 10 dice each number of points from 1 to 6 will drop out on at least one die?
In a corridor of length 100 m, 20 sections of red carpet are laid out. The combined length of the sections is 1000 m. What is the largest number there can be of distinct stretches of the corridor that are not covered by carpet, given that the sections of carpet are all the same width as the corridor?
Is it possible to cut out such a hole in a sheet of paper through which a person could climb through?
In the gymnasium, all students know at least one of the ancient languages – Greek or Latin, some – both languages. 85% of all children know the Greek language and 75% know Latin. How many students know both languages?
A cube with side length of 20 is divided into 8000 unit cubes, and on each cube a number is written. It is known that in each column of 20 cubes parallel to the edge of the cube, the sum of the numbers is equal to 1 (the columns in all three directions are considered). On some cubes a number 10 is written. Through this cube there are three layers of \(1 \times 20 \times 20\) cubes, parallel to the faces of the cube. Find the sum of all the numbers outside of these layers.
Let \(A=\{1,2,3\}\) and \(B=\{2,4\}\) be two sets containing natural numbers. Find the sets: \(A\cup B\), \(A\cap B\), \(A-B\), \(B-A\).
Let \(A=\{1,2,3,4,5\}\) and \(B=\{2,4,5,7\}\) be two sets containing natural numbers. Find the sets: \(A\cup B\), \(A\cap B\), \(A-B\), \(B-A\).
Given three sets \(A,B,C\). Prove that if we take a union \(A\cup B\) and intersect it with the set \(C\), we will get the same set as if we took a union of \(A\cap C\) and \(B\cap C\). Essentially, prove that \((A\cup B)\cap C = (A\cap C)\cup (B\cap C)\).
\(A,B\) and \(C\) are three sets. Prove that if we take an intersection \(A\cap B\) and unite it with the set \(C\), we will get the same set as if we took an intersection of two unions \(A\cup C\) and \(B\cup C\). Essentially, prove that \((A\cap B)\cup C = (A\cup C)\cap (B\cup C)\). Draw a Venn diagram for the set \((A\cap B)\cup C\).