Write out in a row the numbers from \(1\) to \(9\) (every number once) so that every two consecutive numbers give a two-digit number that is divisible by \(7\) or by \(13\).
From the set of numbers 1 to \(2n\), \(n + 1\) numbers are chosen. Prove that among the chosen numbers there are two, one of which is divisible by another.
Prove that for a real positive \(\alpha\) and a positive integer \(d\), \(\lfloor \alpha / d\rfloor = \lfloor \lfloor \alpha\rfloor / d\rfloor\) is always satisfied.
Prove that if \(p\) is a prime number and \(1 \leq k \leq p - 1\), then \(\binom{p}{k}\) is divisible by \(p\).
Prove that if \(p\) is a prime number, then \((a + b)^p - a^p - b^p\) is divisible by \(p\) for any integers \(a\) and \(b\).
We are given 111 different natural numbers that do not exceed 500. Could it be that for each of these numbers, its last digit coincides with the last digit of the sum of all of the remaining numbers?
Peter plays a computer game “A bunch of stones.” First in his pile of stones he has 16 stones. Players take turns taking from the pile either 1, 2, 3 or 4 stones. The one who takes the last stone wins. Peter plays this for the first time and therefore each time he takes a random number of stones, whilst not violating the rules of the game. The computer plays according to the following algorithm: on each turn, it takes the number of stones that leaves it to be in the most favorable position. The game always begins with Peter. How likely is it that Peter will win?
There are fewer than 30 people in a class. The probability that at random a selected girl is an excellent student is \(3/13\), and the probability that at random a chosen boy is an excellent pupil is \(4/11\). How many excellent students are there in the class?
Out of the given numbers 1, 2, 3, ..., 1000, find the largest number \(m\) that has this property: no matter which \(m\) of these numbers you delete, among the remaining \(1000 - m\) numbers there are two, of which one is divisible by the other.
Does there exist a number \(h\) such that for any natural number \(n\) the number \(\lfloor h \times 2021^n\rfloor\) is not divisible by \(\lfloor h \times 2021^{n-1}\rfloor\)?