Hannah recorded the equality \(MA \times TE \times MA \times TI \times CA = 2016000\) and suggested that Charlie replace the same letters with the same numbers, and different letters with different digits, so that the equality becomes true. Does Charlie have the possibility of fulfilling the task?
Catherine laid out 2016 matches on a table and invited Anna and Natasha to play a game which involves taking turns to remove matches from a table: Anna can take 5 matches or 26 matches in her turn, and Natasha can take either 9 or 23. Without waiting for the start of the game, Catherine left, and when she returned, the game was already over. On the table there are two matches, and the one who can not make another turn loses. After a good reflection, Catherine realised which person went first and who won. Figure it out for yourself now.
At a round table, there are 10 people, each of whom is either a knight who always speaks the truth, or a liar who always lies. Two of them said: “Both my neighbors are liars,” and the remaining eight stated: “Both my neighbors are knights.” How many knights could there be among these 10 people?
There are 23 students in a class. During the year, each student of this class celebrated their birthday once, which was attended by some (at least one, but not all) of their classmates. Could it happen that every two pupils of this class met each other the same number of times at such celebrations? (It is believed that at every party every two guests met, and also the birthday person met all the guests.)
10 children were each given a bowl with 100 pieces of pasta. However, these children did not want to eat and instead started to play. One of the children started to place one piece of pasta into every other child’s bowl. What is the least amount of transfers needed so that everyone has a different number of pieces of pasta in their bowl?
On the school board a chairman is chosen. There are four candidates: \(A\), \(B\), \(C\) and \(D\). A special procedure is proposed – each member of the council writes down on a special sheet of candidates the order of his preferences. For example, the sequence \(ACDB\) means that the councilor puts \(A\) in the first place, does not object very much to \(C\), and believes that he is better than \(D\), but least of all would like to see \(B\). Being placed in first place gives the candidate 3 points, the second – 2 points, the third – 1 point, and the fourth - 0 points. After collecting all the sheets, the election commission summarizes the points for each candidate. The winner is the one who has the most points.
After the vote, \(C\) (who scored fewer points than everyone) withdrew his candidacy in connection with his transition to another school. They did not vote again, but simply crossed out \(B\) from all the leaflets. In each sheet there are three candidates left. Therefore, first place was worth 2 points, the second – 1 point, and the third – 0 points. The points were summed up anew.
Could it be that the candidate who previously had the most points, after the self-withdrawal of \(B\) received the fewest points?
Four outwardly identical coins weigh 1, 2, 3 and 4 grams respectively.
Is it possible to find out in four weighings on a set of scales without weights, which one weighs how much?
There are 13 weights, each weighing an integer number of grams. It is known that any 12 of them can be divided into two cups of weights, six weights on each one, which will come to equilibrium. Prove that all the weights have the same weight.
There are two sets of numbers made up of 1s and \(-1\)s, and in each there are 2022 numbers. Prove that in some number of steps it is possible to turn the first set into the second one if for each step you are allowed to simultaneously change the sign of any 11 numbers of the starting set. (Two sets are considered the same if they have the same numbers in the same places.)
A white plane is arbitrarily sprinkled with black ink. Prove that for any positive \(l\) there exists a line segment of length \(l\) with both ends of the same colour.