Problems

Age
Difficulty
Found: 45

There are 25 points on a plane, and among any three of them there can be found two points with a distance between them of less than 1. Prove that there is a circle of radius 1 containing at least 13 of these points.

What is the minimum number of points necessary to mark inside a convex \(n\)-sided polygon, so that at least one marked point always lies inside any triangle whose vertices are shared with those of the polygon?

A castle is surrounded by a circular wall with nine towers, at which there are knights on duty. At the end of each hour, they all move to the neighbouring towers, each knight moving either clockwise or counter-clockwise. During the night, each knight stands for some time at each tower. It is known that there was an hour when at least two knights were on duty at each tower, and there was an hour when there was precisely one knight on duty on each of exactly five towers. Prove that there was an hour when there were no knights on duty on one of the towers.

What is the minimum number of \(1\times 1\) squares that need to be drawn in order to get an image of a \(25\times 25\) square divided into 625 smaller 1x1 squares?

2022 points are selected from a cube, whose edge is equal to 13 units. Is it possible to place a cube with edge of 1 unit in this cube so that there is not one selected point inside it?

In draughts, the king attacks by jumping over another draughts-piece. What is the maximum number of draughts kings we can place on the black squares of a standard \(8\times 8\) draughts board, so that each king is attacking at least one other?

On a circle of radius 1, the point \(O\) is marked and from this point, to the right, a notch is marked using a compass of radius \(l\). From the obtained notch \(O_1\), a new notch is marked, in the same direction with the same radius and this is process is repeated 1968 times. After this, the circle is cut at all 1968 notches, and we get 1968 arcs. How many different lengths of arcs can this result in?

There are several squares on a rectangular sheet of chequered paper of size \(m \times n\) cells, the sides of which run along the vertical and horizontal lines of the paper. It is known that no two squares coincide and no square contains another square within itself. What is the largest number of such squares?