Let \(a\), \(b\), \(c\) be integers; where \(a\) and \(b\) are not equal to zero.
Prove that the equation \(ax + by = c\) has integer solutions if and only if \(c\) is divisible by \(d = \mathrm{GCD} (a, b)\).
Prove that the equation \(\frac {x}{y} + \frac {y}{z} + \frac {z}{x} = 1\) is unsolvable using positive integers.
A unit square is divided into \(n\) triangles. Prove that one of the triangles can be used to completely cover a square with side length \(\frac{1}{n}\).
On each of four cards there is written a natural number. Take two cards at random and add the numbers on them. With equal probability, this amount can be less than 9, equal to 9 or more 9. What numbers can be written on the cards?
In the first term of the year Daniel received five grades in mathematics with each of them being on a scale of 1 to 5, and the most common grade among them was a 5 . In this case it turned out that the median of all his grades was 4, and the arithmetic mean was 3.8. What grades could Daniel have?
Several pieces of carpet are laid along a corridor. Pieces cover the entire corridor from end to end without omissions and even overlap one another, so that over some parts of the floor lie several layers of carpet. Prove that you can remove a few pieces, perhaps by taking them out from under others and leaving the rest exactly in the same places they used to be, so that the corridor will still be completely covered and the total length of the pieces left will be less than twice the length corridor.
A spherical sun is observed to have a finite number of circular sunspots, each of which covers less than half of the sun’s surface. These sunspots are said to be enclosed, that is no two sunspots can touch, and they do not overlap with one another. Prove that the sun will have two diametrically opposite points that are not covered by sunspots.
Ben noticed that all 25 of his classmates have a different number of friends in this class. How many friends does Ben have?