Problems

Age
Difficulty
Found: 34

Let it be known that all the roots of some equation \(x^3 + px^2 + qx + r = 0\) are positive. What additional condition must be satisfied by its coefficients \(p, q\) and \(r\) in order for it to be possible to form a triangle from segments whose lengths are equal to these roots?

Find the coefficient of \(x\) for the polynomial \((x - a) (x - b) (x - c) \dots (x - z)\).

The number \(x\) is such a number that exactly one of the four numbers \(a = x - \sqrt{2}\), \(b = x-1/x\), \(c = x + 1/x\), \(d = x^2 + 2\sqrt{2}\) is not an integer. Find all such \(x\).

The numbers \(x\), \(y\) and \(z\) are such that all three numbers \(x + yz\), \(y + zx\) and \(z + xy\) are rational, and \(x^2 + y^2 = 1\). Prove that the number \(xyz^2\) is also rational.

Author: A. Khrabrov

Do there exist integers \(a\) and \(b\) such that

a) the equation \(x^2 + ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + ax + b = 0\) does have roots?

b) the equation \(x^2 + 2ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + 2ax + b = 0\) does have roots?

Note that here, square brackets represent integers and curly brackets represent non-integer values or 0.

A cubic polynomial \(f (x)\) is given. Let’s find a group of three different numbers \((a, b, c)\) such that \(f (a)= b\), \(f (b) = c\) and \(f (c) = a\). It is known that there were eight such groups \([a_i, b_i, c_i]\), \(i = 1, 2, \dots , 8\), which contains 24 different numbers. Prove that among eight numbers of the form \(a_i + b_i + c_i\) at least three are different.

The equations \[ax^2 + bx + c = 0 \tag{1}\] and \[- ax^2 + bx + c \tag{2}\] are given. Prove that if \(x_1\) and \(x_2\) are, respectively, any roots of the equations (1) and (2), then there is a root \(x_3\) of the equation \(\frac 12 ax^2 + bx + c\) such that either \(x_1 \leq x_3 \leq x_2\) or \(x_1 \geq x_3 \geq x_2\).